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Coding for T-User Mu ltiple-Access Channels 
SHIH-CHUN CHANG, MEMBER, IEEE, AND EDWARD J. WELDON, JR., MEMBER, IEEE 

Abstract-Coding schemes for the binary memoryless T-user adder 
channel are investigated in this paper. Fit upper and lower bounds on the 
capacity sum, which are asymptotically tight with increasing T, are derived 
for the noiseless case. Second, a class of T-user mdquely demdable codes 
with rates, asymptotically in T, equal to the maximal achievable vahes is 
constructed. A  decoding algorithm for these codes is also presented. Next, 
a class of error-correcting codes for the noisy T-user ridder channel is 
constructed. It is shown that these code3 can be osed to construct multi- 
level codes suitable for ose on the additive white Gaussian noise channel. 

I. INTRODUCTION 

M  ULTIPLE-ACCESS communication systems were 
first studied by Shannon [l] in 1961. In 1971, 

Ahlswede [2] determined the capacity regions for the 
two-user and three-user multiple-access channels with in- 
dependent sources, and van der Meulen [3] put forward a 
lim iting expression and simple inner and outer bounds on 
the capacity region for the two-user multiple-access 
channel. In 1972, Liao [4] studied the general T-user 
multiple-access channel with independent sources. He for- 
mulated the capacity region for this channel and proved 
the fundamental coding theorem. Later, Slepian and Wolf 
[5] considered the case with correlated sources and dis- 
cussed the continuous multiple-access channel. The Gaus- 
sian multiple-access channel was considered by Cover [6] 
and Wyner [7]. Ahlswede [8] extended the two-input one- 
output multiple-access case to two-input and two-output, 
and Ulrey [9] generalized the previous results to the arbi- 
trary input, arbitrary-output case in 1975. For a single- 
user memoryless channel, it is known that feedback will 
not increase capacity, but Gaarder and Wolf [lo], and 
later Cover and Leung-Yan-Cheong [ll], showed that 
feedback will enlarge the capacity region of the two-user 
multiple-access channel. An extensive survey on the infor- 
mation-theoretic aspects of multiple-access channels has 
recently been assembled by van der Meulen [ 121, [ 131. 

The coding problem for multiple-access channels has 
been investigated by several authors [ 14]-[ 181. This early 
work concentrated on code construction for the two-user 
adder channel. In this paper we investigate block coding 
for the T-user binary adder channel, both with and 
without noise. 
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Consider the multiple-access communication system de- 
picted in Fig. 1 in which T statistically independent 
sources are attempting to transmit data to T  separate 
destinations over a common discrete memoryless channel. 
The T messages U,, U,, * * . , U, emanating from the T 
sources are encoded independently according to T  block 
codes C,, C,, . . . ,C, of the same length N. Assume that 
the T encoders maintain bit and word synchronization. 
The T codewords Z,, Z,, * . . , Z, emanating from the T 
encoders are combined by the channel into a single vector 
Z  with symbols from a certain alphabet. The single de- 
coder at the receiver processes the received vector Z  and 
decodes it into T  estimated messages o,, fiz2,. . . , fir for 
the T destinations. 

The T codes C,, C,, . . . , C, together are called a T-user 
code (C,,C,; . - , C,); each individual code is called a 
constituent code. Let M i be the number of distinct code- 
words in code Ci. Assume that these codewords are equ- 
ally likely. Then, the rate of the ith constituent code is 

R,- log24 
I --. N 

The sum rate R,,(T) of the T-user code (C,, C,, * - * , C,) 
is defined as 

R,,,(T)=R,+R,+... +R, 
The channel considered first in this paper is the T-input 

noiseless adder depicted in Fig. 2. Each user’s input 
alphabet is the integer set (0, l}, and the output z is the 
sum of the T inputs z,,zz, * * * zr, i.e., 

z=z,+z,+*** +z=, 
where the plus sign denotes real addition. Therefore, each 
output symbol is an integer from the set (0, 1,2, * * * , T}. 
Adding noise to this output produces the noisy adder 
channel shown in Fig. 3. 

A T-user code (C,, C,, . . . ,C,) is said to be uniquely 
decodable if all sums consisting of one codeword from 
each constituent code are distinct. There thus exists a 
decoder for the T-user code that never errs on the noise- 
less T-user adder channel if and only if the code is 
uniquely decodable. In Section II we present the capacity 
region of the noiseless T-user binary adder channel and 
determine the maximal achievable sum rate for T-user 
uniquely decodable codes. In Section III some basic prop- 
erties of T-user uniquely decodable codes are derived. In 
Section IV we construct a class of T-user uniquely decod- 
able codes with rates, asymptotically in T, equal to the 
maximal achievable value. We also exhibit a decoding 
algorithm. In Section V we study the noisy T-user adder 
channel and the multi-user additive white Gaussian noise 
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Fig. 1. Multiple access communicat ion system. 

Using (2.1), we can calculate all conditional mutual infor- 

z = 2.1 + 22 = . . . +  ZT 
mations between input and  output. These mutual infor- 

* 
mations are simultaneously maximized when the Z i are 
statistically independent and  equally likely to be  zero and 

Zj E fO,ll, Z  E {0,1,2....,T), one. This gives 
l<j<T - - z(Z,;Z]Z,,Z,;~~,Z,)=1 

21 

22 

Fig. 2. Noiseless T-user binary adder  channel.  
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T 
Z(Z,,Z,,- * * ( 1  ,Z,;Z)= 2  +og+. 

i-0 
( 1  i 

F rom (2.2) we have the following theorem. 

Theorem 2.1: The  capacity region C of the noiseless 
T-user binary adder  is 

Fig. 3. Noisy T-user binary adder  channel.  

O<R,+R,< 2  
i-0 

(AWGN) channel. Codes for these channels are con- 
strutted. 

II. CAPACITY CALCULATION 

The capacity region for the noiseless T-user binary 
adder  channel  can be  calculated by applying the tech- 

O<R,+R,+--. +R,< 5  
i-0 

niques proposed by Liao [4]. For this channel, the condi- The  capacity region for the three-user case is depicted 
tional probability between input and  output is def ined as in F ig. 4. Theorem 2.1 states that R, + R, + * . - + RT= 
follows: R,,d T) ( ~,,(T)~ where 
P ZIZ,,Z,,.~., &(zIz1,z2,’ * * ~~7’) 

1, forz=z,+z,+.*. +z, = 
0, forz#z,+zz+*** +z,. (2.1) 
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Fig. 4. Capacity region of noiseless three-user binary adder channel. 

This value is the maximal achievable sum rate for T-user 
uniquely decodable codes. It plays an important role in 
code evaluation since the sum rate is a simple measure of 
the efficiency of a T-user code. 

We have not found a closed-form expression for 
C,,,(T). Wolf [22] has shown that the maximal achievable 
sum rate for this channel is approximately equal to 
flog,reT/2. The following lemmas show that this result is 
asymptotically tight with increasing T. 

Lemma 2.1: C,,,(T) is lower bounded by flog,aT/2. 
Lemma 2.2: C,,,(T) is upper bounded by flog,?reT/2 

for T even, and by ilog,re( T+ 1)/2 for T odd. 
Based on computer results, we believe that the tighter 

bound ilog,IreT/2 also holds for T odd. But proofs of 
this conjecture still remain open. 

It follows that C,,,(T) is asymptotically equal to 
flog,aeT/Z as T increases. (Two quantities, g,(t) and 
g*(t), are said to be asymptotically equal if their ratio 
approaches unity as t+cc .) This can be summarized as 
follows. 

Theorem 2.2: The maximal achievable rate of a T-user 
uniquely decodable code for the binary T-user noiseless 
adder channel is asymptotically equal to ilog,7reT/2 with 
increasing T. 

III. PROPERTIES OF T-USER UNIQUELY DECODABLE 
CODES 

Consider a T-user code (C,, C,, * + * , C,). Let 
(Z,,Z,,* - * ,Zr) and (Z;,Z;; -. ,Z;) be two distinct sets of 

vectors with Zi and 2; E Ci for 1 <i < T. Then the T-user 
code (C,, C,,. - . ,C,) is said to be uniquely decodable if 
and only if, for every such distinct pair (Z,,Z,; . . ,Z,) 
and (Z;,Z& - - . ,Z;), 

z,+z,+*** +z,zz;+z;+*-* +z; 

where the plus sign denotes real addition and the addition 
operation is performed componentwise. If the channel in 
the communication system of Fig. 1 is a noiseless T-user 
binary adder channel and the constituent codes 
c,, c,, * * * ,C, employed by the system form a uniquely 
decodable code, then the decoder is capable of decoding 
every possible received vector Z without ambiguity into 
the T codewords that were transmitted by the T encoders. 
Decoding can be achieved in principle by using a decod- 
ing table. 

We want to construct T-user uniquely decodable codes 
with maximal achievable rates R,,(T). An interesting 
(and tractable) special case occurs when the constituent 
codes have equal rates, i.e., R, = R,= - * * = R,. In the 
simplest such case, each constituent code consists of ex- 
actly two codewords. For this case, the sum rate of the 
T-user code is equal to T/N. Obviously in order to 
achieve the maximal rate for a fixed T, we must minimize 
the code length N. 

Consider a binary T-user uniquely decodable code 
cc,, c,, * * * ,Cr) for which the ith constituent code con- 
tains two words, Xi and yi, i.e., Ci = {Xi, Y,}, i = 1,2, * - * , T. 
We call the vector 

4=xi- q 
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the difference vector of Ci, where the m inus sign denotes 
real subtraction. Clearly, the difference vector di has com- 
ponents from the set (0, 1, - 1  }. Now we form the T  X N 
ternary matrix. 

4  
4  D= . 

iT  

This matrix, which will be  referred to as the difference 
matrix of the T-user code (C,, C,, * . * , C,), plays a  central 
role in the construction of T-user uniquely decodable 
codes. 

It follows from the definition of unique decodabil ity 
that a  T-user code (C,, C,, . * . , Cr.) is uniquely decodable 
if and  only if, for any two distinct sets of vectors 
(Z&2,* * * ,Z,)and(Z;,Z;;--,Z&)in(C,,C,;**,C,), 

(z,-z;)+(z,-z;)+-+(z,-z~)#oN (3.1) 

where dv is the all-zero N-tuple. 
Let m=(ml,m2; * *, mT) be  a  vector in {O,l, -l}‘. 

Since Z;. - &! is either ON, di, or - di, it follows from (3.1) 
that the T-user code (C,, C,, . . * , C,) is uniquely decod- 
able if and  only if 

m,d, + m2d2 + . * * + m,d,= mD#O* (3.2) 
for any m#OT. Thus we have immediately the following 
theorem. 

Theorem 3.1: Let (C,, C,, * * . , Cr) be  a  T-user code of 
length N for which each constituent code contains two 
codewords. Let D be  its difference matrix. Let m= 
Cm,, m2, * * * ,m,) be  a  T-tuple in (0, 1, -l}. Then  
(C,,C,,* * -, Cr) is uniquely decodable if and  only if 

mD=O* 
implies that m is the all-zero T-tuple. 

G iven a  TX N matrix D over (0, 1, - l} such that the 
rows of D are linearly independent over (0, 1, - l}, it is 
possible to construct a  T-user uniquely decodable code 
(C,, c,,* * * , Cr). In particular, the two vectors Xi and  Y of 
the ith constituent code Ci are obtained from the ith row 
d;: of D in the following manner.  

1) If the Zth component  of 4  is a  “O”, then the fth 
components of Xi and  Yi are arbitrarily set to “0”. 

2) If the Zth component  of 4  is a  “1,” then we set the 
Zth component  of Xi to “1” and the Zth component  of 
u;. to “0”. 

3) If the Zth component  of di is a  “ - 1,” we set the Zth 
component  of Xi to “0” and the Zth component  of Yi 
to “1.” 

From a  given matrix D, we can construct more than one 
T-user uniquely decodable code, because the Ith compo- 
nents of Xi and  Yi can be  both set to either “0” or to “1” 
when the Ith component  of di is a  “0”. The  T-user code 
constructed in the above manner  will be  said to be  in 
normal form. All the T-user uniquely decodable codes 
constructed from a  niven D will be  said to be  eauivalent. 

687  

Example: Consider the difference matrix 

The  three-user uniquely decodable code in normal form 
constructed from D, is 

G= ullMw~ 
c2= w%w~ 

G= www~. 

IV. CODE CONSTRUCTION AND DECODING FOR THE 
NOISELESS ADDER CHANNEL 

W e  will now construct T-user uniquely decodable codes 
that achieve C,,,(T) asymptotically. The  idea of our 
iterative construction is based on  annexing more columns 
(i.e., bits/word) to the difference matrix of a  known 
uniquely decodable code, and  simultaneously increasing 
the number  of rows (i.e., users) such that the new matrix is 
a  difference matrix for a  uniquely decodable code with 
larger T. 

The  first (trivial) difference matrix is D,,= [1], and  the 
second is 

1  1  
D,= 1  -1 , 

I I 1  0  
which was seen in Section III to be  the difference matrix 
for a  three-user uniquely decodable code. 

It happens that D, can be  represented in terms of D, as 
follows: 

with I,= [l], O ,,= [O]. The  following theorem proves that 
this iterative construction works for any j. 

Theorem 4.1: For any nonnegat ive integer j, the matrix 

(4.1) 

defines a  (j+ 2) *2j-‘-user uniquely decodable code of 
length 2j, where 4-, is the 2j-‘-order identity matrix, O j- i 
is the 2j- i X 2j- ’ zero matrix, and  D, = [ 11. 

Proof: The  proof is by induction on  j. For j=O, 
DO= [l] which specifies a  trivial single-user (uniquely de- 
codable) code of length 1. Assume that Die, defines a  
2jm2*(j+ I)-user uniquely decodable code of length 2j-‘, 

j > 1. Now consider the q  X Nj matrix Di of (4.1). Clearly, 
1;.=,2-[2jA2.(j+ 1)]+2j-‘=(j+2).2j-‘, and  Nj=2j-‘-2 
=2’. W e  must show that Dj is a  difference matrix for a  
T-user uniquely decodable code of length N;. 
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Let m = (ml, m,,m,) be a solution vector of mDj =Oq 
over (0, 1, -l}, where m,,m, E (0, 1, - l}q-1, m3 E 
{O,l, - l}T-I. From (4.1) we have 

mlDj~l+m2Dj~l+m,=dV/-1, (4.2a) 

and 

mlDj-, - m2Dj-, = e-1, 

which reduces to 

(4.2b) 

and 

2mlDj-,= -m3, (4.3) 

m,Dj-,=m@j-1. 
The components of 2mlDj- i must be even integers or 

zero. Since the components of m3 are elements of the set 
(0, 1, - l}, it follows that m,=OT-1. Then (4.3) gives 

mlDj-,=~-~, 

m D.- =0*1-l. 
2J 1 (4.4) 

Since Dj-, is a difference matrix for a q-,-user 
uniquely decodable code, it follows from Theorem 3.1 
that m1 = m,=Oq-1. Thus m=(m,,m,,m,)=0~ and, by 
Theorem 3.1, Dj is a difference matrix of a q-user 
uniquely decodable code of length Nj. Q.E.D. 

The rate R,,,(Tj) f o a code in the class of q-user 
uniquely decodable codes described in Theorem 4.1 is 

R,,,(~)=~=l+~=l+;log2Nj. 
J 

Since 

it follows that 

(4.5) 

This implies the following. S=Z- Y=XD, (4.6) 
Corollary: The q-user uniquely decodable code speci- 

fied by Theorem 4.1 has a sum rate R,,,(q) asymptoti- 
cally equal to the maximal achievable sum rate C,,( TJ 
as Tj increases. 

where X=(&X,,+ * . ,hT). 

Fig. 5 shows the sum rate &,,,(I;), plotted as a func- 
tion of j, j > 2, as well as the upper and lower bounds on 
C,,,(T), for T even. 

Decoding a T-user uniquely decodable code can be 
accomplished in principle with a decoding table since 
there is a one-to-one correspondence between each re- 
ceived N-tuple and the only possible set of T transmitted 
codewords. As in the single user situation, however, the 
decoding table becomes unmanageably large even for 
modest values of N and T. What is needed is a simple and 
systematic means of calculating the transmitted vectors 
from the received vector. For the iterative codes of Theo- 
rem 4.1 this can be done as shown below. 

Since Y is a fixed vector, each output Z has a vector S 
uniquely specified by Z. The role of S in decoding the 
multiple-access channel output is similar to that of a 
syndrome in the single-user situation; hence we will call S 
a “syndrome.” Now the decoding problem is to find the 
solution vector h over (0, I} satisfying the equation S= 
AD. 

In Theorem 4.1 we used the iteration (4.1) to define a 
class of asymptotically good T-user codes. The decoding 
procedure presented here takes advantage of the struc- 
tural symmetry of these codes. The basic idea is to decode 
the code with index j by first decoding the two subcodes 
with index j - 1. Repeating this process j times decodes 
the T.-user code. 

Consider a T-user uniquely decodable iterative code 
cc,, c,; * * , CT). Let Z, E C,,Z, E C,,* * + ,Z, E C, be T in- 

Assume Z is a channel output and S= Z- Y is the 
corresponding syndrome. Then Z can be decoded by 
using the following procedure to solve the equation S= 
X(J>D. 

J’ 

Fig. 5. Capacity bounds and T-user code rates of Theorem 4.1 for T 
even. 

puts to the noiseless T-user adder channel, and let Z=Z, 
+z,+*** + Z, be the corresponding channel output. 
Again, let Y= Y, + Y2 + * * * + Yr; then we can represent 
the difference S= Z- Y in terms of the T difference 
vectors, d,=X,- yi, i=1,2;..,T, 

s=z- Y= 5 (Z;.- KY,)= 5 T&4 
i=l i=l 

where Ci = {Xi, Y} and where 

Ai = 
i 

1, if Zi=Xi, 
0, if Zi = Y. 

This can be expressed in terms of the difference matrix D 
as follows, 
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Let S(j)= S be  the initial syndrome, i.e., 
sU)=s=z- y. 

Then  we partition SQ into two 2j-‘-tuples as 
su’~(~1o’-‘),sy-‘))* 

Let it(J) be the solution vector of 
Xo”D, = S”‘. 

W e  partition the T j-tuple X0” into three parts as 

XO’)=(hZi-‘),X20‘-‘),X30’-‘)), 

syndrome; the first branch has a  new syndrome 
s)i-i)+sf-O-~f-O 

2  

(4.7) and  the second one has a  new syndrome 
s,‘i-.i)-s~i--jl-@-j) 

(4.8) 
2  

Decoding Level j (The F inal Level): At this level A$‘) has 
a  single component,  hi’) and  A$‘) are obtained from the 

(4.9) following equations: 
whose lengths are q- i, q- i, and  2j-‘, respectively. 

Decoding Level I: Equations (4.6), (4.7), (4.8), and  (4.9) h{O) = 
s,(o) + $0’ - jp 

2  
yield the following three key equations: 

~y-1)+i-‘)+sy-‘) (mod 2) (4.10) jp = 
s,(o) - qa  - $0) 

2  * 
h”-l)D, _  sp+so’- 2  ‘Lq-1) 

1  J-l- 2 (4.11) 

@ j-‘)Dj-, = 
sy-‘Lq-‘Lgw 

2  (4.12) 

From (4.10) we can solve for Xy-“. Then the right sides 
of (4.11) and  (4.12) are known, and we will call them the 
lower order syndromes for the separate branches. 

Decoding Level 2: 
Branch 1: Let the new syndrome be  So’-‘). Accord- 

ing to (4.1 l), we have 
so’-1)_ s1o’-‘)+sy-‘L.~y-‘) 

2 

Let 

Knowing Xi”) and  Xl’) , we can determine all of the higher 
order Xl and  A,, thus concluding the decoding process. 

V. CODECONSTRUCTIONFORTHENOISYADDER 
CHANNEL 

So far we have concentrated on  the construction of 
T-user uniquely decodable codes for the noiseless adder  
channel. Now we introduce noise. ,The noisy adder  chan- 
nel can be  regarded as a  noiseless adder  channel  cascaded 
with a  discrete memoryless channel  (DMC) having non- 
zero transition probability for all possible input-output 
pairs (ij), 0  <i < T, 0  <j < T. 

Let 

Z=(z,,z,; * * ,z*)= 5  zi 
i=l 

Then (4.11) becomes be  an  N-tuple over the subset (0, 1,2, * * * , T} of the real 
Ati- “Dj-, = So’- I), field R. Define Z’ similarly with the constraint that the set 

of constituent binary codewords of Z’, that is, 
which is identical to (4.8) with j replaced by j- 1. 

Branch 2: Similarly, let the new syndrome be  So’-‘). 
tz;,z;,* - - 7  Zh) are distinct from those of Z, that is, 
(z,,z,, . . . ,Z,). The  N-tuples 5  and Z i are codewords in 

This time  we use (4.12) to obtain Ci, the jth constituent code. The  L-distance between Z  

so’-‘)- 
s10’-‘)-sy)-~y-‘) 

m  
L 

Proceeding as in Branch 1  again gives an  equat ion identi- 
cal to (4.8) with j replaced by j - 1. 

Decoding Level i (2 Q  i <j - 1): In general, we can re- 
peat the above procedure by applying (4.10), (4.1 l), (4.12) 
to every branch with suitable replacements of the super- 
script i. The  total number  of decoding branches with 
known syndromes at the ith decoding level is equal  to 
2’-i. Any branch at this level always has a  known syn- 
drome, let us say S(i-i+l)=(Sl(i-i),Szo’-i)), which is de- 
rived from the preceding level. Based on  this syndrome, 
we can always decode a  known 2j-‘-tuple Xy-‘) by the 
equat ion 

~~-i)Es~-O+s~-i) (mod 2), 
and  derive two new branches. Each branch has its own 

and Z’ is def ined as follows: 

d,(Z,Z’) = 2  Izi- z;l = (IZ- Z’ll 
i=l 

(5.1) 

where the m inus sign denotes real subtraction and ]zi - zil 
denotes the absolute value of zi - z;. Equation (5.1) de- 
fines the symbol Ilnl]. It is easy to show that the L-dis- 
tance is a  metric [21]. 

The  m inimum L-distance, d,,,i,, of a  T-user code is the 
smallest value of d,(Z,Z’) over all ZZZ’. 

The  number  of transmission errors is def ined as the 
L-distance between the sum of the transmitted codewords 
Z  and the channel  output Z”. That is, 

e(Z,Z”) = IIZ” - Z ll. 
If a  code has m inimum distance d,, and  distance is a  
metric, its error correcting capability is [(dmi,- 1)/2], cf. 
[191* 
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The error-correcting capability of a T-user code with 
two-word constituent codes is specified by the difference 
matrix of the T-user code. The following theorem relates 
the error correcting capability of such codes to the struc- 
ture of the matrix D. 

Theorem 5.1: A T-user code with 2 codewords per con- 
stituent code has m inimum distance 

dmin= n$n IlmD II (5.2) 

where m  is a nonzero T-tuple over (0, 1, - 1 }. 

Proof By definition, 
dmin= pJ;,d,(Z,Z’)= pi;, IIZ-2’11. 

But from the definition of the matrix D, Z-Z’=mD for 
some m  over (0, 1, - I}, m  #O, and conversely for any m  
there are vectors Z  and Z’ such that Z-Z’ = mD. Q.E.D. 

We now construct a class of T-user error-correcting 
codes for which the rate vector is a,bove the time-sharing 
[ 1] hyperplane, i.e., R,,,(T) > 1. A proof is furnished in 
the Appendix. 

Theorem 5.2: Let Diu) be a matrix over (0, 1, - I} 
formed as follows: 

D!jJ I 1 
-De ’ I 1 1 (5.3) 

where 02) is the matrix Dj of Theorem 4.1. Then Die) 
defines a T-user code of length N and distance dmin where 
T=(j+2).2j-*+i, N=2j+i, and dmi, = 2’. The sum rate of 
the code constructed by this theorem is 

R,,(T)=$=l+;log;. (5.4) 
nun 

Any binary T-user error-correcting code can be used to 
construct an S-user code, S< T, by grouping sets of 
binary codes together to form codes over larger alphabets. 
In particular, the codes of Theorem 5.2 can be used to 
form nonbinary codes as follows. Let T= T,*L where TL 
and L are integers. Then the T constituent codes can be 
partitioned into TL sets, each having L binary codes. Let 
cj,,Q * * 9 C, be the constituent codes of the jth set. 
Then these codes can be used to form an (L + I)-ary code 
5 by taking a codeword in q to be the real sum of one 
codeword from each constituent code Cjl, CJz,. - - , 
C,. Each code 4 has 2L codewords. Both the sum rate 
and m inimum L-distance of the code are the same as 
those of the binary parent code. The above can be 
summarized as follows. 

Theorem 5.3: The binary codes constructed in Theo- 
rem 5.2 can be used to construct an (L + l)-ary T,-user 
code of length N with the following properties: 

dmin = 2’ 

R 1 N 
sum= l+ pgd,, 

provided T= T,-L, where T, and L are both integers. The 

symbols i and N are defined in Theorem 5.2. These codes 
are suitable for use on the multi-user AWGN channels. 
Also, when T, = 1 we have a very interesting special case 
which will be discussed elsewhere. 
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APPENDIX 

Proof of Lemma 2.1 

T ( > 2 +log*$ > 5 iIog2T 
i-0 ( J i-Ot2” jri,)=10g2($$’ 

(A.11 
where [T/2] denotes the greatest integer less than or equal to 
T/2. However, ’ 

[ 19, p. 4661. 64.2) 

It follows from (A.l) and (A.2) that 

Q.E.D. 

Proof of Lemma 2.2 

Let 
T ( ) Pi’& 

2T 
a= T+l [ 1 - , 2 

and 

Then, 

&=-L-e -(i-a)'/o 

v&i . 

- 5 Pilog2Li = - 2 Pi - 
ti - 4’ - 

Iog2e 
i-0 i=O 

1 $log,(lra) 
7 

1 

Since 

= ilog2(ra)+ +(log,e)(;)= klog2(lrea). 

(A.31 

Csum( T) = $ pilOg2 $, 9 
i-0 I 
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we have ThUS 

C,“,(T) - $og,(nea) = 5 P,loga$ 
i-0 i 

T 

< x Pi 
( 1 

+-1 log,e 
i-0 ’ 

Consider all T and let 

It remains to show that A < 1. From [20, (9.2)], we have 

Lg 
diGi i--* 

e-i2/a= 5  e-&2 
i---m 

=1+2 5 e-&‘. 
i-l 

Therefore, from (A.5) and (A.6), 

(A.41 

64.5) 

64.6) 

i-l 

3 1+2 5 (e-4- e-“i)* 

i-l 

For a > 1, the value of i which minimizes Eli - Ezi is 1. Then for 
i = 1, E,i - Ezi increases monotonically with a. Hence Eli - Ezi is 
minimized for a = 1; here we have used 

a2> 22  + log,6 . 
Hence, for all i > 1 and a > 1, Eli >Ezi. Therefore, the right side 
of (A.4) is negative, and the lemma holds. Q.E.D. 

Proof of Theorem 5.2 

By Theorem 4.1, the matrix 08) defines a code with parame- 
ters 

T=(j+2)2j-’ 
N=2’ 

dti, =  2’. 

Now, we assume that the matrix Die), defines a code with 
parameters 

691 

~~mD,O’)J~=~~mlD~,+m2Dji_)l~~+I~mlDi(i_)l-m2D~1~I. 

But since ]]a + bll + /la - bll > 2 max(llull, llbll) and since 
Ilm,D/!),II > 2’-’ for I= 1,2, it follows that 

l lrnD~~(/ >  2’. 

It remains to be shown that there is a vector m such that 
IImDiti~ll = 2’. It is easy to see that the bottom row of Dp) has a 
single one, that of Dr has two ones, and that of q has 2’ ones. 
Hence the vector m = (00. . . 01) has the desired property. Q.E.D. 
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