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Abstract-The  discrete  multitone (DMT) modulation is consid- 
ered to be  a  viable  transmission  scheme  for  high-speed  subscriber 
loop. In this  paper,  the  fast  algorithm  for  computing  the  equalizer 
settings  derived  in [l] is extended  and  applied for the DMT 
in  high-speed  subscriber  loop. The  channel  pulse response is 
assumed  to  be  given by the  channel identification method,  and 
then  the  equalizer  filter  settings  are computed. In simulatiom, a 
fast algorithm  for  the symbol spaced  equalizer in a  colored  noise 
channel  is  used.  Simulation  results  performed in variow CSA 
loops  indicate  that  the  fast  algorithm  yields  the near-optimum 
settings  for the DMT system. 

I. INTRODUCTION 
HERE HAS been growing interest in utilization of ex- 
isting unshielded copper twisted pair for various appli- 

cations including but  not limited to ISDN, DSL, HDSL, and 
more recently, ADSL. The maximum achievable data rate on 
thc carrier serving area (CSA) loops, containing approximately 
80% of the lines between central offices (CO) and remote 
customer premises, has been improving and has exceeded 6 
Mbps for ADSL application. 

This paper describes the discrete multitone (DMT) modula- 
tion in high-speed subscriber loop. DMT modulation has been 
chosen as  the ANSI standard for data transmission for ADSL 
application. 

The receiver of a DMT system consists of a time-domain 
equalizer (TEQ) that is an FIR filter and there are several 
methods to train the TEQ during startup, see [2] and [3]. How- 
ever, these mcthods either involve intense computation such 
as matrix inversion [2], or require a significant amount of iter- 
ations and time before the algorithm reaches convergence [ 3 ] .  
The former method thus results in high complexity count and 
expensive cost, and the latter method may have limited appli- 
cations, especially in areas  where a fast training time is crucial. 

In most practical situations, the channel response is not 
known a priori. Thus adaptation of the equalizer is essen- 
tial when data is transmitted over an unknown channel. As 
discussed in [ 11, the conventional LMS algorithm of the TEQ 
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may take millions of iterations to converge to the optimal 
settings on a copper twisted pair loop channel. 

The slow convergence motivates study of non-iterative 
methods to compute the optimum equalizer settings. Thus, in 
contrast to the conventional recursive adaptive technique, Lee 
and Cioffi [l] have proposed the fast computation algorithm 
of the decision feedback equalizer (DFE) that has a similar 
structure to the TEQ. Exploiting this structural similarity, this 
paper extends the non-recursive fast algorithm in [l] to the 
TEQ case and examines performance of the non-recursive fast 
algorithm in high-speed subscriber loop. 

Non-iterative adaptive algorithm proposed in [I] is based on 
the channel estimates. The equalizer coefficients are computed 
using the discrete Fourier transform (Dm)  operation very 
efficiently. Since the Toeplitz autocorrelation matrices are 
approximated by the circulant matrices, the solution from the 
fast algorithm is not exactly the optimum solution. However, 
the S N R  difference from the exact solution is only a few 
tenth of a dB. Moreover, the gap approaches zero as the size 
of the autocorrelation matrix (the length of the feedforward 
filter, in the TEQ case) increases, since a circulant matrix is 
asymptotically equivalent to a Toeplitz matrix [4]. 

The fast algorithm is attractive especially in the DMT 
scheme since the fast Fourier transform (FFT) operation em- 
bedded in the DMT can be shared to generate the solution of 
the fast algorithm without costing additional hardware. 

In th s  paper, the channel pulse response is assumed 
to be given using some well-known channel identification 
techniques. This identification can be done in a  few thousand 
iterations and still takes much shorter time in comparison 
with the total convergence time of the conventional LMS 
algorithm. When noise is no longer white, the noise 
autocorrelation function can also be estimated with a little 
longer training sequences. Channel identification problem 
will be described later. 

We  wiU show that the proposed fast algorithm computes 
the TEQ coefficients with much reduced complexity compared 
with the method in [2] and obtains the results with a much 
shorter time period than the method described in [3 ]  even after 
taking into account the process of channel identification. 

In Section II, the DMT structure is explained and the TEQ is 
described in more detail. Section 111 briefly shows the optimum 
TEQ settings f21. The only difference between the TEQ and 
the DFE is that the minimum phase constraint on the feedback 
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Fig. 1. Basic structure of a DMT system. 
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Fig. 2. Block diagram of a DMT transmitter. 

Fig. 3. Block diagram of a DMT receiver. 

filter is not  required in the TEQ. Thus, the  DFE is a special 
case of the TEQ solution  with  a  minimum-phase constraint on 
the feedback  filter. The computation of the TEQ  coefficients 
can be easily  extended from the  DFE case by  changing the 
position of a  unit center tap  in the feedback  filter.  (In the 
DFE, the position of a  unit center tap  is set to the first  tap.) 

In Section IV, we revisit the fast algorithm  with  a colored 
noise  case. Section V briefly discusses the  channel  identifica- 
tion  problem. Finally, Section VI shows the simulation results 
for various copper loops  and  impairments. 

11. DISCRETE  MULTITONE (DMT) MODULATION 

Discrete  multitone (DMT) moduhtion divides a channel 
into a set of parallel independent  subchannels. The SNR 
of each subchannel is measured  and  an  appropriate  amount 
of information or bits is then assigned to each  subchannel. 
As  a result, the DMT system optimizes  performance for 
any  channel  that  it encounters, by  virtue of the adaptive, 
selective bithnformation allocation to each of the independent 
subchannels.  Fig.  1  shows the basic structure of DMT systems. 
At the transmitter,  the data is modulated by a set of parallel, 

independent subchannels, p ; ,  i = 0, a . , N ,  - 1: where N ,  is 
the  number of independent  subchannels.  The p , s  divide up the 
channel and  modulate the input data, xi, i = 0, .... N ,  - 1. 
The modulated signal is then  summed  together  before  it is 
sent to the channel, hb. At the receiver, the received signal 
is demodulated by the corresponding set of demodulating 
vectors that separate the received signal into a set of parallel, 
independent subchannels. 

A specific  implementation of the DMT system is  shown in 
Figs. 2 and 3. The modulation and demodulation  techniques 
we  used  are the inverse fast Fourier transform (IFFT) and the 
fast Fourier transform (FFT), respectively. Efficient  algorithms 
for I F F T  and  FFT are well-known  and  thus  significantly 
reduce  the  complexity of implementing the modulation  and 
demodulation functions. 

The binary input data are parsed onto a set of parallel, 
independent subchannels, each of which  is  assigned  a  fixed 
number of bits during startup or system initialization. Given 
the measured SNR of each  subchannel  during startup, the 
number of bits for each subchannel is  then  determined.  Each 
subchannel is encoded  into  a  QAM  constellation of the appro- 



priate size. For example, if four bits are assigned to tone i, then 
tone ,i w i l l  use a 16-QAM constellation for encoding. Optional 
coding can be inserted as shown in the encoder block in Fig. 2. 
The modulation function, I F I T ,  converts the encoded binary 
data in QAM constellation format from frequency domain 
to time domain signal for transmission. The demodulation 
function (FFT) at the receiver reverts the time domain signal 
back to frequency domain data. 

The DMT  system described in [5] and shown in Figs. 2 
and 3 also contains a guard  band in the form of cyclic prefix. 
The length of the cyclic prefix determines the amount of the 
guard band. As long as the inter-symbol interference (ISI) of 
the channel is not longer than the length of the cyclic prefix, 
then the use of the cyclic prefix results in DMT symbols that 
are free of inter-block interference (IBI). 

A potential problem in the implementation of the DMT 
modulation methods is the use of the cyclic prefix of an extra 
v samples, where v+ 1 is the length in sampling periods of the 
channel pulse response [6]. The required overhead with respect 
to the data rate is then I ) /  (N, + v) . On many practical channels 
including  the high-speed subscriber loop, v can be large. To 
minimize the data rate loss due to the overhead, N, needs to 
he very large, potentially 10 000 samples or more. Complexity 
is still minimal with the DMT methods with large N,, when 
measured in terms of operation per unit time interval. How- 
ever, large iv, implies large memory requirement to store the 
bit allocation tables and intermediate FETm;FT results, often 
dominating the implementation complexity. Further, large N, 
implies longer latency in processing. Long latency can create 
problems with synchronization and can also be unacceptable 
with certain higher-level dxta protocols. 

One solution Lo the latency problem is to use a combination 
of short-length equalization and the DMT to reduce v, and 
thereby the required N,, to reach the highest performance 
levels with less memory and less latency. The equalizer used 
is known as a time-domain equalizer (TEQ). 

At the receiver front-end, the TEQ, w(D), in the form 
of a (&I + 1)-tap FIR filter is performed (as shown in 
Fig. 3). This TEQ shortens the channel response so that 
the combincd response of the channel and the TEQ taps is 
limited to a small number of samples, ideally equal  to or 
less than the length of the cyclic prefix. Following the TEQ, 
the cyclic  prefix samples are removed from the equalized 
signal. The remaining equdiLed time-domain samples, Zk, k = 
0, 1 , . . . , N,  - 1; are then demodulated by the N,-point FFT 
function to frequency-domain data, resulting in N J 2  complex 
subsymbols. Appropriate gain and phase adjustment in the 
form of a set of N,/2 1-tap complex LMS filters (&,n = 
0,1,  . . . , N,/2 - 1) are multiplied to the demodulated signal 
(Z,,, ‘n = 0,1, . . , Nc/2 - I) before symbol decision and de- 
coding. If the optional trellis coding is used at the transmitter, 
then a corresponding Viterbi  will  be added at the receiver. 

The  TEQ and cyclic prefix for the DMT system are analo- 
gous to the feedforward taps and the feedback taps of a DFE 
system. Both the TEQ of a DMT system and the feedforward 
taps of a DFE system are FIR  filters. The feedback taps 
of a DFE system are equal to the combined channel and 
feedforward FIR  response. The length of the feedback filter 
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Fig. 4. Structure of the TEQ. 

is the same as the length of the cyclic prefix in terms of the 
functionality. 

Reference [2] suggests a method  to compute the TEQ taps. 
However, this method requires matrix inversion computation 
and often resolcs’in fairly high cost of implementation, espe- 
cially for cases of large size FFT. An alternative method is 
proposed in [3] that requires far less complexity. The method 
in 131 starts with specifying the numbcr of FIR taps for the 
TEQ and the length of thc cyclic prefix. It then iterates until a 
suitable criterion is satisfied. The drawback of this method is 
the length of time it takcs to obtain a good set of TEQ taps. 
Even though the TEQ training is performed only once during 
startup or initialization, there are applications where a short 
startup time is critical. 

Thus in Section I V ,  we will show a fast training algorithm 
that has less complexity than the method described in [2] and 
requires less training time than the method described in [3]. 

fll. EQUALIZER SETTINGS FOR THE TEQ 

The structure of the TEQ is described in Fig. 4. The goal 
of the TEQ is to reduce the size of the cyclic prefix so that 
the overall data rate loss is minimized. The TEQ uses the 
feedforwad filter w to shape the channel to the target response 
6 with a short length. There are several criteria that can be 
applied to the target response. In this paper, we put a unit tap 
constraint on b so [hat one of b tap is set to 1. Actually, the 
TEQ proposed in 123 subsumes the DFE since the feedback 
filter in the DFE (corresponding to the target response in the 
TEQ) is restricted to being monic. With a unit tap constraint, 
the TEQ chooses the optimum settings w and b that , ~ n i m i z e  
the mean square error. 

Assuming that the pulse response h(t) extends over a finite 
interval 0 5 t 5 uT,  where T denotes the symbol period, 
with a symbol-spaced equalizer, the input/output relation for 
the discrete time equivalent channel has the form 

m = O  

where {gk} is the channel output sequence, { h k }  is the channel 
pulse response, {zh} is the channel  input sequence with signal 
power E,, and { n k }  is the additive Gaussian noise sequence 
with variance u:. We assume that the channel input sequence 
{zk} and the noise sequence {nk} are uncorrelated with each 
other.  In  typical high-speed subscriber loop, the noise sequence 
is colored due to crosstalk. 
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From the above equation, we  can form the following rela- 
tion: 

yk = H Z k  + 9Zk 
where 

Lnl2-A4+1 J 
and 

Ln . . .  0 ho hi . . .  h, 
We will denote the feedforward filter and the target re- 

sponse by w and b, where w = [wow1 s.. WAl-11  T and b = 
[boblbz . . a b ~ - 1 ] ~ .  Thus, the lengths of the feedforward filter 
and  the  target response are M and N ,  respectively. Also, from 
the above equation, we define R,, = E [ X ~ - A X ; - ~ ] ,  R,, = 
Rf, = E [ x k - ~ y g ]  and R,, = E[ykyz ]  where a represents 
the decision delay. 

From the figure, the error is  defined as 

where X k - a  = [x k--a~k--h-~...~k-a-1~+,] T . 
response in the TEQ [2] is 

Then, from the orthogonality principle, the desired target 

where 

Rzly - R,&iif& 

and el is the unit column vector with 1 in lth position. Also, 
the feedforward filter (the TEQ taps [2]) is 

w = Ri;R,,b. (2)  

The optimal b and w are determined by searching for all 
possible 1 (0 5 1 5 N - 1) to maximize the achievable data 
rate in thc DMT system. 

It is straightforward to check that  with 1 = 0 the above 
solutions equal to the DFE solution. Since the DFE solution 
is a subset of the TEQ solution, it is easy to extend the fast 
algorithm for the DFE in [l] to one for the TEQ settings. In 
the following section, we  briefly revisit the fast algorithm and 
derive one for the TEQ in a colored noise channel. 

IV. A FAST EQUALIZATION ALGORITHM 

This section illustrates the fast algorithm for the TEQ in a 
symbol-spaced case with  a colored noise. 

Using the fact that a circulant matrix has the discrete Fourier 
transform basis vectors as its eigenvectors, and the discrete 

Fourier transform of its first column as its eigenvalues [4], an 
M by M circulant matrix C can be decomposed as 

where P is the discrete Fourier transform (Dm) matrix  with 

and Rc = diag [Co, C1, . .  . C&1] is the diagonal matrix 
whose diagonal element C, is the ith element of the M-point 
DFT of the first column of the circulant matrix C. It is useful 
to partition P into P I  and Pz:  P = [ P ~ P z ]  where the sizes 
of PI  and Pz are M by N and M by M - N raypectively. 

In the fast algorithm, we assume that the feedforward filter 
w is longer than the target response b ( M  2 N ) .  This 
restriction may  not  be practical in some subscriber loop, 
where  the  target response can be longer than the feedforward 
filter. However, a long feedforward filter can be  accurately 
approximated by  a pole-zero filter  with fewer coefficients using 
a computationally-efficient algorithm described in [7] with 
little performance loss. 

More detailed derivation is found in [l]. Similarly, it is easy 
to see that in a colored noise case, the Toeplitz autocorrelation 
matrices are approximated to the circulant matrices: 

and 

where Hi is ith element of &i-point DFT of 
[ho, / & I , .  s h,, 0, . . . O ] ,  f i i  is the ith elcment of the DFT 
of [ n M - l ,  n A l - 2  + . . n o ]  and PA,; = e-jaXai/lM. 

Substituting the above equations into equations in the pre- 
vious section yields 

and 

We note  that R+ is an N by N upper left submatrix of 
a  circukant  matrix whose first column is the inverse DFT of 

- 
E x I N 1 2  

Z,AflH12+IN12 ' 

It can be shown that using the Schur complement,' the 
inverse of R,l , is 

'The Schur complement of D in the block matrix [$ g] is A - 
CD-'B [8]. 
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Neglecting the last term of the right hand side in the above 
cquation, R$, is approximated by 

Note that when w and b have the same length ( M  = 
N )  , E;,: is exactly (l/M)P*h,;,P and no approximation 
takes place. Plugging the above equation into (1) yields 

where IC' is a scaling constant to make the Zth element of the 
target response b equal to 1 (bl = L),pl is the 1 the column of 

P , I  is the N by N identity matrix and SNR, = 13812 . E,MIHi12 

Then, defining 13; as 

the target response can be obtained from the IDFT operation: 
~ M - 1  

With 6, we can compute the feedforward filter w from (2): 

Then, multiplying both sides by P yields 

where wi is the ith DFT element of w and €4 is the ith 
M-point DFT element of [bobl . . . bnr-lO. . .0]. 

From this equation, we can obtain w k  using the mFT: 
. M - 1  

Using the above DFT and IDFT operations, Ihe computation 
of the TEQ coefficients are carried out very  efficiently. We 
have found in [ 11 that calibrating b by a scaling factor a yields 
a better solution. The equation for the optimum Q has  been 
derived in [l]. 

As explained in [l], the solution from the fast algorithm 
converge to the optimal solution as M increases, since the 
approximation of a Toeplitz matrix by a circulant matrix 

becomes accurate as the size of a matrix grows. This will 
be verified through simulations later. 

In summary, we compute the TEQ settings for each 1 
value and pick the optimum settings to achieve the highest 
throughput in the DMT system. After the TEQ coefficients 
are obtained using the fast algorithm, the LMS algorithm may 
be employed for the tracking purpose afterwards. 

V. CHANNEL IDENTIFICATION 
In this section, we briefly analyze the channel identification 

method that the proposed fast algorithm can adopt. 
There are several schemes that carry out the channel iden- 

tification efficiently.  Channel identification methods measure 
the channel pulse response assuming the noise spectrum is 
flat. The channel noise is an undesired disturbance in channel 
pulse response estimation, and this noise needs to be averaged 
in determining the channel response. 

One easy method is to use a pcriodic training sequence xk 
with period M ,  equal to or slightly longer than the length 
of the channcl pulse response. The receiver measures the 
corresponding channel output averaging over L cycles, and 
then divides the DFT of the channel output by the DFT of 
the known training sequence. The channel estimate in the 
frequency domain is 

L 
_"_ 1,x, 

where Yi,, is the nth element of the DFT of the channel output 
on ith cycle and X,, is the nth element of the DFT of the 
input training sequence. 

It can be shown [ti] that the overall MSE of the estimation 
error is q u a t  to (I + 1/L)a; where g2 is the power of the 
additive noise. The excess MSE then has variance ( l /L )a ;  
that is reduced by a factor equal to the number of avcraging. 
Therefore, when L = 40, we  can tolcrate only 1 + & = 0.1 dB 
excess error in channel pulse response estimation. Eve11 con- 
sidering the worst channel pulse response in typical subscriber 
loops (in terms  of the length of the channel memory), with total 
5000 sample periods an accurate pulse response estimation 
can be c a m 4  out resulting in less than 0.1 dB excess MSE. 
Combining this channel estimation scheme, the proposed fast 
algorithm still produce the equalizer settings very  efficiently 
in contrast to the traditional recursive adaptive algorithm. 
Ik the following section: simulation results using the fast 

algorithm are shown. 

VI. SIMULATIONS 

This section presents simulation results using the fast al- 
gorithm described in the previous section and compaes thcm 
with the optimal TEQ settings obtained by a dircct matrix 
inversion. A symbol-spaced equalizer is assumed in this sim- 
ulation. Also the optimized a is used to scale b. To simplify 
the analysis in simulations, we restrict Z to 0. Also, instead of 
the data rate, SNR = Zz/E[Ie~12]  is  used  as a performance 
measure to indicate the perfonnancc of the  fast algorithm. 

Several length copper loops with 26 gauge have been used 
for simulations. Matched filter bound (MFB) SNRMFB .= 
I I hl I2Zz/a; is set to 20 dB throughout this study, if not stated 
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400m 26 Gauge LOOP (N=10) 

I I 

the  optimal SNR 

13.2 the SNR lmrr the proposed algorithm I 
i , 

40 45 50 55 60 
The number of the Feedtoward hller taps (M) 

Fig. 5. Performance of the  proposed  algorithm  with  different  fecdforward 
filter length. 

10m 26 Gauge Loop (N-8) 
20 

198 ,_----- 

19.4 I 1 
- 19.2 - : t9 -  

m 
18.8- 

18.6- - optimal  SNR 
--.  SNR fromthe proposed  algorithm 

18.4 - 

18.2 - i L '?b r'8 & d2 24 26 28 30 32 
(he number oi the feedlowarc filter  taps (M) 

Fig. 6 .  Performance of the  proposed  algorithm  with  different feedforward 
filter length. 

otherwise.  In the plots, the solid line represents the optimal 
SNR computed from the  direct  matrix  inversion and the dashed 
line indicates the SNR  computed from the fast algorithm. 

1 )  Length of the Feedforward Filter: In  Figs. 5 and 6, the 
number of the feedforward  filter  taps (Ad) is changed for a 
26 gauge 400 m  and  a 10 m loop, respectively. For each 
simulations, the lengths of the target  response  are set to 8 and 
10. It is obvious that  as thc length of the feedforward filter 
increases, performance of the  proposed  algorithm  approaches 
that of the optimal TEQ coefficients  within  a  tenth of a dB. In 
a shorter loop, the proposed  algorithm  works  better. As shown 
in  Fig. 6, with feedforward filters  longer than 20 taps, the gap 
between  the  optimal settings and  the  coefficients  obtained from 
the fast algorithm becomes  indiscernible. 

2 )  Length of the Target Response: We performed the fast 
algorithm on 26 gauge 9 kft and 100 m loop in Figs. 7 and 
8 with  various choices of the  target response length. For 
simulation,  the length of the feedfonvard filter is set to an 
integer  power of 2 (64 and 32 in Figs. 7 and 8, respectively) 
so that  the DFT operations are carried out by the fast Fourier 
transform  (FFT) to speed  up the computation.  Nine  kft  26 
gauge loop channel is used  as  an  example for ADSL loop, 

9kil26 Gauge Loop ( k 6 4 )  

13.1 

;, , , , , , , , optlmal SNR 
SNR from the proposed  algorithm 

12.3 

12.2 
14 16 18 20  22 24 26  28 30 32 

the number of the  target  response  taps IN) 

Fig. 7. Performance of the  proposed  algorithm  with  different  target response 
length. 

Ihe wmber of the target respnre taps (N) 
8 10 12 14  16 

Fig, 8. Performance of the  proposed  algorithm  with  different target response 
length. 

since this loop represents one of the worst case loops among 
the set of CSA loops [9]. For  both cascs, thc proposed 
algorithm generates near-optimal  solutions. 

3) Trunsrnit Power: We changed the transmit power in 
400  m 26 gauge loop. Fig. 9 shows the performance of the 
proposed  algorithm from MFB = 10-30 dB.  The lengths of 
the feedforward filter  and  target response are set to 64 and 18, 
respectively.  Simulation indicates the fast algorithm  generates 
solutions close to the  optimum settings consistently regardless 
of the transmit  power. 

4) Crosstalk Coupling: The  near-end  crosstalk (NEXT) 
term  is  modeled [lo] with  a coupling function of the form: 
IHNExT(J) 1' = KNEXT f 3 / 2 ,  where f is the frequency in Hz 
and KNEXT is determined through empirical measurement. In 
this simulation, the far-end crosstalk (FEXT)  is  assumed to be 
negligible because  we  consider  short loops here. We changed 
KNEXT from to in 400 m 26 gauge loop and the 
fast algorithm in  a  colored noise case is used for simulation. 
In  this  simulation,  an  input signal power of 10 mW and  a 
noise power of -30 dBm across a  two-sided  bandwidth are 
assumed. As the effect of the  near-end  crosstalk increases, the 
output  SNR  decreases in Fig. 10. Again,  the  SNR from the 
proposed fast algorithm is only  a  few  tenth of a dE3 away 
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400m 26 Gauge Loop (M=64,N=18) 

optimal SNR 
SNR !rom the proposed algorithm 
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18- 
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Matched Filter Bound (dEi) 

Fig. 9. Performance of the proposed algorithm with different M F B .  

. . SNR from the proposed algorithm 

32 
10-15 10.“ 

Knext 
1 0 =  

Fig. 10. Performance of  the proposed algorithm with different K,,,t. 

from the optimum solution in a subscriber loop corrupted by 
the near-end crosstalk. 

Our performance evaluations showed that the proposed 
algorithm performs vely well in various situations. The gap 
between the optimal SNR and the S N R  from the proposed 
algorithm is shown to be a few tenths of a dB and becomes 
negligible as the length of the feedforward filter increases. 
Thus, for any sufficiently long feedforward filter, the proposed 
algorithm can compute the optimal equalizer setting very 
efficiently without any performance loss. 

V11. CONCLUSION 

We have illustrated a fast algorithm for the time-domain 
equalizer (TEQ) in the discrete multitone ( D m )  modulation 
for high performance copper networks. The overall compu- 
tation is carried out with negligible performance loss as the 
number of the feedforward filter taps increases. 

Simulations have been performed in various coppcr loop 
channels. Effects of the feedforward and target response 
length, the matched filter bound and the near-end crosstalk 
coupling have been examined. Simulation results show that 
the fast algorithm yields near-optimal settings very  efficiently 
in various environments. 
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