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Perfect Equalization for DMT Systems
Without Guard Interval

Steffen Trautmann and Norbert J. Fliege, Fellow, IEEE

Abstract—We propose a new, low-complexity frequency-domain
equalizer for discrete multitone (DMT) systems, which, in the
absence of a guard interval, utilizes existing redundancy in
the frequency domain to completely eliminate intersymbol and
interchannel interferences. A perfect reconstruction condition
is derived for the noise-free case leading to a sparse equalizer
matrix structure. It is furthermore shown that under realistic
scenarios minimum mean square error adaptation of the equalizer
coefficients allows for nearly perfect reconstruction already for a
much smaller amount of redundancy than indicated by the perfect
reconstruction condition.

The new equalization scheme has at least the same potential com-
pared with traditional DMT while offering new degrees of freedom
for designing short-latency DMT systems.

Index Terms—Bandwidth efficiency, discrete multitone, equal-
ization, FEQ, intersymbol interference/interchannel interference,
latency.

I. INTRODUCTION

ONE OF THE main advantages of discrete multitone
(DMT) systems is their simple receiver structure utilizing

a channel equalizer with only one complex multiplication per
carrier. This is achieved by introducing a time domain guard
interval (GI) enabling the receiver to separate the steady-state
response from the transient response of the transmission
channel. The GI, placed between the symbols, has to be at
least as long as the channel impulse response (CIR) in order
to avoid intersymbol interference (ISI) and interchannel inter-
ference (ICI). This, however, severely restricts the achievable
bandwidth efficiency especially for short-latency systems.
Therefore, despite superior noise robustness, wider range and
less power consumption, DMT was not adopted for HDSL2
systems [1].

To relax this problem, most DMT receivers apply an finite-
impulse response (FIR) time domain equalizer (TEQ) before
discrete Fourier transform (DFT) transform in order to shorten
the effective length of the CIR (e.g., [2], [3]) . Further improve-
ment can be achieved by shifting the TEQ to the frequency do-
main [4]. However, for complete equalization of the channel it
is still necessary to add some kind of redundancy. Beside the
common GI insertion, some authors aim to add redundancy by
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precoding techniques [5], while other utilize redundancy due to
oversampling [6].

Alternatively, usage of frequency domain redundancy has
been investigated as well. For most DMT implementations not
every possible carrier is suited for data transmission. Hybrids in
the signal path, finite transition of antialiasing and interpolation
filters, and frequency-selective zeros in the channel spectrum
limit the usable bandwidth. This generates a certain redun-
dancy in the frequency domain, which may also be utilized
for equalization. In [7], taking unused carriers into account
for equalization was successfully applied to wavelet-based
multitone (DWMT) systems with symbol-overlapping mul-
tiple-input–multiple-output (MIMO) receivers. Such a receiver
structure can also be combined with a DMT transmitter, as we
have shown in [8].

By exploitation of all structural degrees of freedom MIMO
receivers offer maximum performance, but also require a high
computational complexity for practical implementation. The re-
ceiver complexity can be reduced by splitting the MIMO struc-
ture into back transform to the frequency domain followed by
a general linear combiner (LC) or frequency-domain equalizer
(FEQ). Then, assuming a stronger impact on ISI/ICI from direct
neighbors, the number of linear combinations can be limited to
a small set of neighboring carriers and symbols. This reduction
works well for DWMT systems with superior spectral selec-
tivity of the transform basis filters [9], [10]. However, in the crit-
ically sampled case of DMT, without a GI and with every pos-
sible carrier used, any simplification of the FEQ structure sig-
nificantly increases ISI/ICI. As a consequence, all approaches
in the frequency domain for DMT systems have provided only
moderate results so far.

In this paper, we present a new approach for the compensa-
tion of ISI and ICI distortions which is based on a surprising
discovery: while linear combinations of output samples from ar-
bitrary “normal used” carriers provide only poor compensation
effects, samples from unused carriers have a strong impact on
the equalization. With only a few linear combinations of unused
carrier output samples perfect reconstruction can be achieved,
i.e., ISI and ICI can totally be eliminated even in receiver struc-
tures without a GI. It turns out that the performance of the new
equalization scheme is totally independent from the channel fre-
quency response at the positions of the unused carriers. Thus,
extra redundancy from normally unusable carriers can be uti-
lized for ISI/ICI equalization without reducing the bandwidth
efficiency, or increasing system latency. This is an essential ad-
vantage compared with the time domain GI solution. Further-
more, simulation results will show that optimal performance
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988 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 20, NO. 5, JUNE 2002

Fig. 1. DMT structure without GI, applying the new equalizer scheme (carriers 0, 1, andM � 1 are not used for transmission).

Fig. 2. Decomposition of the CIR into head part, peak coefficient, and tail part.

under realistic, noisy environments is already achieved with a
very small number of unused carriers.

In the following context, we refer to our proposed method as
“FEQ–DMT.”

II. PERFECT-RECONSTRUCTION(PR) PROPERTY

Consider a GI-less DMT system with transmitter DMT
symbols consisting of QAM-modulated elements

and with receiver DMT symbols
as shown in Fig. 1. The discrete time-invariant transmission
channel , afflicted with a propagation
delay as illustrated in Fig. 2, contains the peak coefficient at
discrete time instant , enclosed by a preceding head
part of coefficients and a following tail part, consisting of

coefficients.
Assuming the length of the CIR as
with , we have to deal with ISI/ICI from the

preceding and the following DMT symbol. In order to describe
these effects, we form a transmitter triple which is a
series of three consecutive transmitted DMT symbols. Then, we

define a transfer matrix as which in the
ideal case without additive noise fulfills

(1)

represents the equalizer, while and specify the
DFT and IDFT matrix, respectively, of size . symbolizes
the Kronecker product, anddefines transpose-conjugate op-
eration. The Toeplitz-like channel matrixdescribes the linear
convolution of the IDFT-transformed transmitter triples with the
CIR.

With the pseudoinverse of , defined as
, we can calculate the equalizer matrix

(2)

which allows for perfect reconstruction in a noise-free environ-
ment in case that . However, usually is not in-
vertible, and we are unable to eliminate ISI/ICI from the neigh-
boring symbols and carriers. Therefore, we have to investigate
special nontrivial system structures different from GI insertion
which provide a solution for (1).

In a first essential step, we figure out, which part ofallows
for perfect reconstruction when using a common DMT receiver,
and which part actually causes the interference we are trying to
eliminate. As shown in Fig. 3, following the decomposition of

in Fig. 2, we can split into three blocks: a center
part , a head part , and a tail part :

(3)

with

...
...

. . .
...

...
. . .

...

...
...

(4)
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Fig. 3. Decomposition of the channel matrix into cyclic and error part.

...
. ..

. . .
...

. . .

. . .

...
. . .

. . .
...

(5)

and

...
...
...

. . .
...

...
. . .

. ..
...

(6)

causes ISI from the preceding symbol, while
generates ISI from the following symbol. Furthermore, be-

cause does not possess a cyclic Toeplitz structure, ICI is in-
troduced as well. Therefore, the ideal channel matrix—let us
call it —would have and the center block
completed to a cyclic Toeplitz matrix. Thus, the remaining part

must be responsible for ISI/ICI. As illustrated in
Fig. 3, we obtain

(7)

Applying (7) to (1) leads to

(8)

Now, after dividing into an ideal part and an error part, we
can formulate two separate problems from (1)

I. (9)

and

II. (10)

First, has to perfectly equalize the transmission over the cyclic
channel part . And second, with the influence of the
ISI/ICI part has to be completely eliminated as well.

With , the cyclic part of the transfer
matrix in (9) can be further simplified to

(11)

It can be shown that by singular value decomposition the cyclic
Toeplitz matrix equals to

with the diagonal matrix
and being the coefficients of the channel fre-
quency response. Hence, the cyclic part is reduced to

, and after elimination of the zero columns (9)
can be rewritten as

(12)

with the obvious solution
and . Note that this corresponds to

the usual DMT one-tap-equalizer compensating the steady-state
response of the transmission channel.

Realizing an equalizer according to (12), we have left no free-
doms for solving (10). Only for the trivial constellation

a ISI/ICI-free transmission would be possible.
Returning to the initial situation, there exists at least one so-

lution for (1) if the number of columns of matrix , i.e., the
total number of carriers , is equal to or larger than the number
of linearly independent columns in . One way to match this
constellation is to assume that a certain number of carriers
is not used for transmission. Provided that no signal energy is
distributed to unused carriers, with every additional unused car-
rier, three more columns in are multiplied by zero, i.e., are
no longer relevant for solvability of (1). For a first moment one
could think that we need to reduce the number of used carriers

down to in order to fulfill the above
condition. But we will see in the following context that this is
only valid for the worst case.

Note that with unused carriers the number of relevant rows
in is also reduced to for equalization of the remaining used
carriers.

For matrix notation of the mentioned elimination of
nonrelevant rows and columns, we need to define a small set of
selection matrices with

(13)
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with

if carrier is used
if carrier is not used

and

(14)

Shrinked to the nonzero columns, is reduced to a
matrix , and to an matrix .

From the DFT output , selects the samples of the
used carriers, whereas collects the unused carrier DFT
samples. Therewith, we can splitinto two independent groups
of equalizer coefficients

(15)

where contains all linear combinations with unused carrier
output samples, and includes the linear combinations with
the used carrier output samples. Furthermore, with (15) we are
able to distinguish between the free parameters inin terms of
solving either (9), or (10). Decomposition of is depicted in
Fig. 4 as well as derivation of the compact notations forand

for better understanding of the following equations.
After cancellation of the zero columns and rows using

and and substitution of (15), we write for (12)

(16)

Solvability of this system is guaranteed. Completed to the full
equalizer submatrix we obtain

(17)

Note that represents a submatrix of. Therefore,
contains an incomplete diagonal matrix with the inverse channel
coefficients at the used carrier frequencies. As desired, the solu-
tion of (9) is independent from . Hence, the free parameters
in may be completely used for solving (10).

Eliminating the nonrelevant rows and columns in (10) leads
to

(18)

Following the definition of and , in order to reduce to
the nonzero parts, we need to construct additional selection ma-
trices with the corresponding reduced
matrix and matrix , respectively.
Then, if we define and as the com-
pact notation without zero columns and rows, the reduced ma-
trix of the error part of the channel is

(19)

Fig. 4. Decomposition of the equalizer matrix and derivation of compact
notation.

Substituting (15) and (19) in (18) and moving the -depen-
dent part to the right hand side, it follows:

(20)

or in compact notation

(21)

This system is only solvable if the number of linearly indepen-
dent columns in is not greater than the number of free pa-
rameters . It is known that the number of independent columns
of a matrix product equals the minimum number of independent
columns within all factors. While as a part of the DFT
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matrix and for most realistic channels can be as-
sumed to have full column rank, it can be shown that has
a structure like

(22)

A further explanation of and is not necessary. It is
only important to recognize that has only inde-
pendent columns. Therefore, (21) has at least one solution, if

. This leads to two special cases.

Case 1

, In this case, perfect equalization
is always possible if the CIR is not longer than the number of
unused carriers plus one.

Case 2

, This is only the case if
. The maximum channel length for perfect equalization is

then only restricted by the chosen model boundaries in (1). With
and channels up to a length of

coefficients fulfill this condition.
Note that for channels without propagation delay, i.e.,

, is reduced to independent columns, and already for
used carriers we would be able to equalize channels

up to a length of coefficients.
From the practical point of view it is rather unlikely to use

only a third of all possible carriers as required for case 2. We
will, therefore, concentrate on the constellation described by
case 1. Then, without limiting the number of solutions, all pos-
sible which solve (21) can also be found by solving the
simplified system

(23)

Assuming the existence of the (pseudo)-inverse of ,
which means that , and substituting (17), then
is calculated as follows:

(24)

Summarizing the results of this section, we obtain a depen-
dence between CIR length and necessary number of unused car-
riers which is equivalent to the relation between CIR length and
GI length for common DMT: Starting with and
for the trivial solution without redundancy, with every additional
unused carrier, the CIR length is allowed to be one coefficient
longer for perfect equalization.

Note that perfect equalization only makes sense in a virtually
noise-free environment. Thus, the condition repre-
sents the worst case, i.e., the maximum need of redundancy. For
an additive white Gaussian noise (AWGN)-afflicted channel, the
number of unused carriers actually needed for optimal minimum
mean-square-error (MMSE) performance is much smaller, as
will be shown in Section IV.

Interestingly, (17) and (24) only depend on the channel
frequency response at the used carrier frequencies in .
Transmission characteristics of the unused carriers is of no

importance, because only the ISI/ICI leakage into these carriers
is utilized for equalization. Here, the supposed disadvantage
of the DFT basis filters becomes a clear advantage. Due to
its worse spectral selectivity, ISI/ICI energy is spread almost
uniformly to all carriers, not only to the nearest neighbors. In
other words, carriers which are normally unsuitable for data
transmission, suddenly receive a complete new importance.
We do not need to sacrifice the “good” carriers in flat areas of
the frequency response for optimal FEQ performance. When
introducing redundancy in the frequency domain, it is sufficient
to choose the worst carriers in terms of attenuation.

III. N OISE ROBUSTNESS

In this section, we will show that for a certain number of
unused carrier constellations, noise enhancement of the zero-
forcing (ZF) solution can be kept constant for all carriers and
limited to a reasonable level. Alternatively, an MMSE-based op-
timization of the equalizer coefficients is also presented, which
takes additive noise into account and allows for arbitrary unused
carrier arrangements.

A. Noise Sensitivity of the ZF Solution

Computation of the equalizer coefficients after a ZF con-
straint as presented in Section II allows for optimal results if no
or very little additive noise is present. It is, however, commonly
known that ZF equalizers tend to noise amplification, and per-
formance decreases as soon as additive channel noise reaches a
certain value. For our proposed method, noise amplification of
the ZF solution is strongly dependent on the positions of unused
carriers utilized for equalization. Thus, it may be possible to find
a few constellations where noise enhancement is small enough
for practical implementation. In the following we will show that
indeed for a limited number of periodic unused-carrier arrange-
ments the resulting noise after equalization remains white with
a maximum amplification by 3 dB in relation to common DMT.

We remember that as a part of equals the one-tap-equal-
izer scheme used for DMT. Therefore, if we assume an
AWGN-channel with uncorrelated noise on each carrier, and

, a certain noise enhancement compared with DMT
is inevitable. Furthermore, when inverting , especially
for large symbol lengths , we obtain huge values in
which cause significant noise amplification in the equalized
symbol.

If we define the noise amplification factor for carrier index
as the ratio , where and specify

the th rows of and , respectively, we obtain in logarithmic
notation

(25)

The vector contains the noise amplification factors
for each carrier, and represents a column vector

with ones. The operator applied to a matrix extracts
a column vector from the main diagonal of that matrix.

It turns out that the inner product tends
to contain large coefficients depending on the unused carrier
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arrangement. From the definition of the pseudo inverse, it would
be desirable if between and a relation like

(26)

could be established. This requires that equals
a scaled identity matrix, i.e., has to be a unitary matrix.
If we replace with the submatrices from (20) it follows
that:

(27)

The matrix represents a cyclic Toeplitz matrix
with the first row , where contains
the main diagonal elements of the column selection matrix.

has ones and zeros in the diagonal. Thus, the diagonal
elements of are always constant and equal to

, i.e., . But only for the (useless) special case that
, equals a diagonal matrix as desired.

Therefore, the following reduction to the relevant rows and
columns using should lead us to a diagonal
matrix. For any pair assuming a constant , this is
only possible if

(28)

Given this formation, simplifies to .
Substituting this relation in (25) and considering that all diag-
onal elements in

(29)

are equal to , we obtain a constant noise amplification for
all carriers

(30)

which can be at most 3 dB with respect to a DMT one-tap equal-
izer, provided that .

Since and accordingly is conjugate
symmetric, the number of possible for a desired constella-
tion corresponding to (28) is rather limited. For arbitrary,
only in case that considerable noise enhancement can
be prevented. Only one unused carrier is sufficient under this
condition. However, further redundancy reduces the noise am-
plification to .

Considering the special properties of the DFT, we know that
the transformed vector has an arrangement according
to (28) if shows a periodic pattern with an integer period

. This helps us to derive a few special cases
which are useful for practical implementation:

a) Baseband DMT Transmission (DMT-Based xDSL Like
ADSL, VDSL)In case of real baseband transmission, indepen-
dent from the transmission channel characteristics, carriers at

and cannot be used for complex modulation.
Then, the main diagonal of equals

(31)

shows a pattern with period . Thus, the DFT results in

(32)

ISI/ICI can be eliminated for channels up to an effective
length of three coefficients. Noise amplification is either
1.76 dB ( ) or 3 dB ( ). Any further unused
carriers may be used to reduce the noise amplification.

b) Pilot-Based DMT TransmissionFor time-variant transmis-
sion channels, equidistant, so-called pilot carriers with a fixed
content are used for permanent update of the channel estimate.
We combine the pilot samples within one DMT symbol to
a pilot symbol and first define
the fixed content of the pilots , which of course only
makes sense under insufficient orthogonality conditions, i.e., in
the presence of ISI/ICI. With no transmission over these car-
riers, the available redundancy may be additionally used for
equalization. It is only required to have a symbol length which
is an integer multiple of the pilot distance. Then, we have

(33)

and accordingly

(34)

A DMT system with pilot carriers fulfilling the above condi-
tions has the ability to ideally equalize channels up to a length
of coefficients without a GI. According to (30), and de-
pending on the redundancy exploitation, additive noise is kept
white and amplified to at most 3 dB.

Even if the pilots are different from zero, perfect recon-
struction is always possible. However, in this case, a column
reduction of the equation system by right-hand side multiplica-
tion with as in (18) cannot be applied. Then, an additional
condition to compensate the interference of the pilot symbol into
the data symbol can be described by

(35)

By multiplying the known pilot symbol we end up with one
additional equation, or column, respectively, for subsystem II in
(20)

(36)

Therefore, the maximum length of an equalizable CIR given
nonzero pilots reduces to coefficients.
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B. MMSE-Based Optimization

The restriction to periodic unused carrier arrangements usu-
ally does not allow us to utilize all existing redundancy in the
frequency domain. Furthermore, computation after a perfect-re-
construction constraint is definitely not matched to realistic con-
ditions. A MMSE-based optimization of the FEQ coefficients
which minimizes the mean squared error between the de-
layed input symbol and the output symbol

(37)

is more suitable for noise-afflicted channels.
If describes the DFT output, the reconstructed receive

symbol without unused carrier samples follows from:

(38)

Then, with as the th row of and as the autocorre-
lation matrix of we obtain

(39)

Comparing (38) with (1), considering additive noise on
the transmission channel, and reducing and to the
nonzero part leads to

(40)

Here, selects the nonzero elements in, whereas
collects the used carrier input samples from . Ac-
cordingly, represents three consecutive input symbols

in compact notation without unused carrier zeros. The
channel matrix is split into two submatrices
in order to incorporate the effects of noise coloring due to the
optional FIR-TEQ. defines the physical channel, and
symbolizes the convolution with the TEQ. In case that no TEQ
is used, we have and .

Substituting (40) into (39) and assuming a zero-mean, white
noise process with constant noise energy in all carriers,
the mean squared error results in

(41)

where is the autocorrelation matrix of , and
corresponds to the th row of

Fig. 5. (Normalized) CIR of a 10 km loop with 0.9 mm diameter, with and
without TEQ.

. Partial derivation of this equation after gives the
optimal equalizer coefficients as follows:

(42)

with .
As already mentioned it turns out that with MMSE adapta-

tion of the FEQ coefficients nearly perfect equalization is al-
ready achieved with a much smaller number of unused carriers
as expected from the PR condition. Clearly, FEQ–DMT is much
less sensitive to a deviation from the PR condition compared
with traditional DMT using a GI. While DMT introduces strong
ISI/ICI as soon as the GI length is only a few taps shorter than
the effective CIR length, FEQ–DMT appears to perform an indi-
rect shortening of the CIR. This statement even holds true if the
CIR length significantly overrides the DFT symbol length.
Thus, FEQ–DMT eliminates another restriction of the DMT al-
gorithm, namely that the CIR has to fit within one DFT symbol
in order to prevent time domain aliasing.

IV. SIMULATION RESULTS

Several design examples of the proposed FEQ scheme have
been compared with original DMT modulation using a Matlab-
simulated DMT system. The used channel characteristics were
determined by an existing DMT system [11] on twisted-pair
loops with lengths between 2 to 30 km and diameters of 0.8
or 0.9 mm. At a fixed sampling rate of kHz, the im-
pulse responses of the measured channels have a length of sev-
eral hundred coefficients, shortened to approximately 9 to 13
coefficients using MMSE-optimized TEQ filters [12]. As an ex-
ample, Figs. 5 and 6 show impulse and frequency response of a
10 km loop before and after TEQ shortening.

The simulation uses a sufficient number of random data sym-
bols to estimate the noise component caused by ISI/ICI and
AWGN.

We decided to consider data throughput for comparison in
order to illustrate not only dependency on ISI/ICI errors, but also
on bandwidth efficiency. Therefore, based on the estimated SNR
a following Hughes–Hartogs adaptive loading algorithm [13]
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Fig. 6. (Normalized) channel frequency response of a 10 km loop with 0.9 mm
diameter, with and without TEQ.

Fig. 7. FEQ performance of unused-carrier branch selection versus
neighboring branch selection (M =64, SNR=30 dB).

maximizes the data rate for constant sum transmission power
and BER 10 .

If not directly mentioned, we use a DFT length of ,
and a AWGN-distorted channel with SNR30 dB. In general,
we assume baseband transmission, i.e., for each DMT example,
the carriers at DC and cannot be used.

Fig. 7 shows the data throughput for different reduced equal-
izer matrices . Symmetric constellations with neighboring
carriers and neighboring symbols to each side are consid-
ered for equalization. If then unused carriers are also
considered according to our proposed method. This leads to

active branches, or nonzero elements,
respectively, in . Note that with neighboring symbols
are also considered for equalization, i.e.,becomes a rectan-
gular matrix, whereas FEQ–DMT only takes
the present symbol into account. Without unused carriers per-
formance is linearly increasing with the number of neighboring
carriers. Taking the nearest neighboring symbols into account
( ) slightly increases the performance. Due to the effec-

Fig. 8. Performance of FEQ–DMT for AWGN-distorted channel with
different SNR (M =64,K =8).

Fig. 9. Performance of FEQ–DMT versus DMT in dependence on TEQ usage
(M =64, SNR=30 dB).

tive length of the CIR, ISI is limited to the direct neighbored
symbols, and does not give any further improvement.
Our proposed method with only four equidistant unused carriers
and clearly outperforms all other constellations with
neighborhood branch selection at a much smaller complexity.
Furthermore, if , any consideration of neighboring car-
riers does not give significant performance improvement. It is,
therefore, sufficient to reduce to the combination with unused
carrier output samples.

As we can see in Fig. 8, ZF computation of the FEQ coef-
ficients is most sensitive to noise. Alternatively, first numerical
results using a common exponentially-weighted recursive-least-
square (RLS) algorithm show robust and fast convergence close
to the optimal MMSE solution. Usually, 50 to 100 iterations are
sufficient for a weighting factor of .

In order to demonstrate the CIR shortening capability of
FEQ–DMT, Fig. 9 shows the performance of conventional
DMT versus FEQ–DMT depending on the introduced redun-
dancy either with, or without TEQ. MMSE optimization is
applied for adaptation of the FEQ coefficients.
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When using a TEQ we achieve optimum performance as ex-
pected for about . Without TEQ the sit-
uation changes completely: While conventional DMT perfor-
mance collapses due to severe ISI/ICI distortions, FEQ–DMT
outperforms the TEQ-aided result with even less needed re-
dundancy. We repeated this simulation for various twisted pair
loops—each with more than 200 coefficients—with always the
same observation: Typically, 8 to 12 unused carriers are suffi-
cient for optimal FEQ performance. Although , ISI/ICI
distortion is kept below the level of typical background noise.

In contrary to the TEQ, FEQ–DMT allows for direct maxi-
mization of the data rate using simple linear methods for coeffi-
cient adaptation. Together with the gain in bandwidth efficiency
by taking advantage of the two unusable carriers this explains
the higher data rate of TEQ-less FEQ–DMT in comparison to
original DMT with TEQ.

In general, the combination of FEQ–DMT with a separately
adapted TEQ filter appears suboptimal if not obsolete at all.

V. CONCLUSION AND OUTLOOK

With the proposed algorithm redundancy insertion of the
DMT algorithm is completely shifted from the time domain
to the frequency domain. Therewith, it becomes possible to
utilize existing redundancy in the frequency domain, which
normally remains unused when using traditional algorithms.
For this purpose, the DMT single-tap equalizer is extended with
additional branches from unused carrier DFT output samples. It
was shown that, like traditional DMT, the new algorithm allows
for perfect equalization of the receive signal under noise-free
conditions.

One of the most interesting aspects which can be read from
the perfect reconstruction condition is the fact that the channel
characteristics at the position of the carriers used for the ex-
tended FEQ is of no importance. FEQ–DMT only utilizes the
ISI/ICI leakage caused by the DFT operation at the receiver
side. This leakage effect is especially strong and wide-spread
for DMT “thanks” to the poor spectral selectivity of the DFT
basis filters.

Over noisy channels, MMSE-adapted FEQ–DMT provides a
much higher robustness against insufficient orthogonality con-
ditions than conventional DMT. Without an additional TEQ it
compensates for ISI/ICI and even time domain aliasing effects.

FEQ–DMT always provides the smallest possible latency
time for a given parameter constellation, independent from
the amount of introduced redundancy. This may not be very
interesting for an ADSL scenario, where the GI has only
1/16th of the DFT symbol length. However, when designing
DMT systems with significantly smaller latency compared
with ADSL, optimal redundancy usage and minimum, redun-
dancy-independent latency become essential preconditions.

In contrary to traditional CIR shortening using a TEQ,
FEQ–DMT directly maximizes data throughput, separate for
each carrier and with simple, well-investigated linear coeffi-
cient adaptation methods like LMS or RLS.

For typical values of , complexity of the extended FEQ is
similar if not smaller compared with a TEQ. That means when

Fig. 10. Performance of baseband DMT with and without usage of
frequency domain redundancy (M =512,f = 2.208 MHz, CSA loop #2,
SNR=30 dB).

discarding the former obligatory TEQ, FEQ–DMT can be im-
plemented without increasing the overall complexity.

In this paper, we have restricted the derivation of the new
equalizer to the case where no GI is used. It is, however, possible
to combine both, GI insertion and FEQ method. This allows for
optimal distribution of redundancy, either to time or frequency
domain, with respect to data rate, latency time, or complexity.
Without explaining the mathematical background a first result
is presented in Fig. 10. Different from the previous simulations,
we used ADSL-conform DFT length, sampling rate, and band-
width for this example in order to apply a standard test loop
(CSA #2). An AWGN-distorted channel of SNR30 dB was
assumed. The solid line shows the data rate in dependence on the
GI length for conventional DMT. The second line draws the per-
formance of the same system, but now including the linear com-
bination with only the two unusable carriers at DC and .
Especially for a small GI, performance is drastically increased
while the complexity enhancement is almost negligible. Note
that the effect of improving the bandwidth efficiency becomes
even more significant with DFT lengths smaller than 512. Also,
this example applies only two unused carriers for the extended
FEQ. Each additional unused carrier would further improve the
data throughput. Note also that we used a nine-tap TEQ filter
in order to shorten the CIR of the CSA test loop. Without TEQ,
performance of the conventional DMT system would be even
worse compared with the combination of GI and FEQ.

Provided that unused carriers are available, the combination
of GI and FEQ method allows to improve the performance of
any kind of DMT receiver with no changes in the transmitter
and without violating a standard. GI insertion in conjunction
with the extended FEQ can be regarded as a generalization of
the conventional DMT scheme and will be subject to further
investigation.
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