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Per Tone Equalization for DMT-based Transmission over IIR Channels
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Abstract—Recently, an alternative receiver structure was presented for
discrete multitone (DMT)-based systems. The traditional structure con-
sisting of a (real) time domain equalizer (TEQ) with a (complex) 1-tap
frequency domain equalizer (FEQ) per tone is modified into a structure
with a (complex) multitap FEQ per tone. The signal-to-noise ratio (SNR)
for each individual tone is maximized, hence the term “per tone equaliza-
tion”.

Here, we derive an equalization scheme for DMT-based systems in an
alternative way. We start from the assumption that the transmission chan-
nel to equalize has an infinite impulse response (IIR) or pole-zero model.
We conclude that, under certain numerator and denominator conditions,
the per tone equalizer is a close approximation of the optimal minimum
mean square error (MMSE) equalizer. In case the numerator order con-
dition is not fulfilled, we propose a low-complexity generalization of the
per tone equalizer. This generalization is based on a suboptimal MMSE
criterion and exploits transmit redundancy introduced by means of pilot
and/or unused tones.

I. INTRODUCTION

Multicarrier modulation (MCM) has regained interest over
the last decade. Several all-digital variants have been proposed:
discrete multitone (DMT) is adopted as transmission scheme
for asymmetric digital subscriber line (ADSL) and presented
as a candidate for very high bit rate digital subscriber line
(VDSL); orthogonal frequency division multiplexing (OFDM)
is proposed for various wireless local area applications, e.g.
HiperLAN Type 2 [1]. Throughout the text, we will use the
term “DMT”, although all principles are applicable to OFDM
as well.

DMT schemes divide the available bandwidth into parallel
subbands or tones. The incoming bitstream is split into parallel
streams that are used to QAM-modulate the different tones.
The modulation is done by means of an inverse fast Fourier
transform (IFFT). Before transmission, a cyclic prefix is added
to each symbol. If the channel impulse response order is less
than or equal to the cyclic prefix length, demodulation can be
implemented by means of an FFT, followed by a (complex) 1-
tap frequency domain equalizer (FEQ) per tone to compensate
for the channel amplitude and phase effects.

A long prefix however results in a large overhead with re-
spect to the data rate. An existing solution for this problem
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is to insert a (real) T -tap time domain equalizer (TEQ) before
demodulation, to shorten the channel impulse response. Many
algorithms have been developed to initialize the TEQ (e.g. [2]).
However a general disadvantage is that the TEQ equalizes all
tones simultaneously and as a result limits the performance.

In [3], the authors propose a different receiver scheme that
always results in better performance while keeping complexity
during data transmission at the same level. Equalization is done
for each tone separately after the FFT-demodulation, hence the
term “per tone equalization”.

The per tone equalizer is derived by transferring the TEQ op-
erations to the frequency domain. In this paper, we propose an
alternative derivation for the equalization of a DMT scheme.
Starting point is the assumption that the transmission chan-
nel can be represented by an infinite impulse response (IIR)
or pole-zero model. It will be shown that the per tone equal-
izer is a close approximation of the optimal minimum mean
square error (MMSE) equalizer, on condition that the numera-
tor order is less than or equal to the cyclic prefix length and the
number of equalizer taps per tone is larger than the denomina-
tor order. The accuracy of the approximation depends on the
colour of the noise and the denominator order. In addition, we
present a generalization of the per tone equalizer, in case the
numerator order condition is not fulfilled. The generalization
is derived from a suboptimal MMSE criterion. It is based on
the exploitation or addition of transmit redundancy by means
of pilot tones and/or unused tones. Hence, by choosing the
number of equalizer taps, the number of exploited pilot/unused
tones and the cyclic prefix length, we implicitly fix an estimate
of the IIR channel model order.

In section II, the data model and notation are introduced.
Section III derives a per tone equalizer for three cases: (1) an
IIR channel model with numerator order less than or equal to
the cyclic prefix length, (2) an FIR channel model of arbitrary
order and (3) the general case with arbitrary numerator and de-
nominator order, which is a combination of case 1 and 2. Sec-
tion IV evaluates the performance of the new, generalized per
tone equalizer and studies the effect of the number of equalizer
taps, the number of exploited pilot/unused tones and the cyclic
prefix length in an ADSL context.

II. DATA MODEL AND NOTATION

In [5] and [6], it is stated that an IIR model offers a parsimo-
nious representation of very long impulse responses in wired
transmission applications such as DSL systems.

The IIR model H(z) has a numerator B(z) of order Lb and



a denominatorA(z) of order La :

H(z) =
B(z)

A(z)
=

PLb
l=0 blz

�lPLa
l=0 alz

�l
; (1)

with a0 = 1, which leads to the following relationship between
transmitted samples u[k], received samples y[k] and noise sam-
ples n[k] :

LaX
l=0

al(y[k � l]� n[k � l]) =

LbX
l=0

blu[k � l]: (2)

In fact, the TEQ strategy is also based on the assumption of
an IIR channel model: the TEQ should compensate for the
denominator A(z), while the 1-tap FEQ per tone cancels the
effect of the numerator B(z), provided Lb � � (� being the
cyclic prefix length) [6].

Assume N is the (I)FFT size in transmitter and receiver, s =
N + � is the symbol block size (with prefix) and k is the block
time index, then (2) gives rise to the following block-based
description:2
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withAT ;BT Toeplitz matrices (size N � (N + Lb) and N �

(N + La) respectively) and

~yk =
�
y[ks+ � � La] � � � y[(k + 1)s� 1]

�T
uk~nk =

�
n[ks+ � � La] � � � n[(k + 1)s� 1]

�T
~uk =

�
u[ks+ � � Lb] � � � u[(k + 1)s� 1]

�T
:

Since a linear convolution can be seen as a circular convolu-
tion with appropriate correction terms, we rewrite (3):

ACyk +A��yk = BCuk +B��uk +AT ~nk (4)

with AC and BC circulant matrices (both size N �N ; BC is
readily obtained fromAC):

AC =

2
66666666664
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;

withA� andB� tall Toeplitz matrices (size N �La and N �

Lb respectively;B� is readily obtained fromA�):

A� =

2
666664

aLa aLa�1 � � � a1
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...

. . .
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with the N � 1 vectors

yk =
�
y[ks+ �] � � � y[(k + 1)s� 1]

�T
uk =

�
u[ks+ �] � � � u[(k + 1)s� 1]

�T
and with the entries of the “difference terms” vectors in y and
u,

�yk =
�
�yk[1] � � � �yk[La]

�T
and

�uk =
�
�u[1] � � � �u[Lb]

�T
;

given by:

�yk[La + 1� n] = y[ks+ � � n]� y[(k + 1)s� n]

�uk[Lb + 1� n] = u[ks+ � � n]� u[(k + 1)s� n]

with n = 1; � � � ; La and Lb.
The vector uk is the IFFT output, i.e. uk = INUk with

IN the N � N (unitary) inverse discrete Fourier transform

(IDFT) matrix and Uk =
�
Uk[0] � � � Uk[N � 1]

�T
the

N transmitted complex subsymbols at block time index k. The
receiver FFT output is Yk = FNyk with FN the (unitary)
N �N DFT matrix.

To get to the final data model, we exploit the DFT-based
decomposition of a circulant matrix, XC = INXDFN , with
XD a diagonal matrix with the DFT of the first column ofXC

as diagonal entries:

ADYk +FNA��yk = BDUk +FNB��uk +FNAT ~nk:

(5)
In general, this is a set of N equations in N + Lb unknowns
Uk and �uk. In practice however, some variables Uk[n] and
�uk[n] are known at the receiver:
� Uk[n] = 0 for unused tones, e.g. in frequency division du-
plexing (FDD) ADSL, the unused tones n = 30; � � � ; 37 sepa-
rate upstream and downstream;
� � difference terms in u are zero because of the cyclic prefix:

�uk[Lb+1�n] = u[ks+ ��n]�u[(k+1)s�n] = 0 (6)

for n = 1; � � � ; �.

III. PER TONE EQUALIZATION OVER IIR CHANNELS

Based on (5), we will now derive a minimum mean square
error (MMSE) equalizer for three cases. The first case assumes
an IIR model with restricted numerator order Lb � �. The
second case deals with an FIR model of arbitrary order, i.e.
La = 0; Lb > �. Finally, we combine both cases yielding a
solution for arbitrary La and Lb.



A. Case 1: Lb � �

If Lb � �, the difference terms in u vanish: �uk � 0.
As a consequence, (5) is not underdetermined any more. The
optimal MMSE estimate Ûk ofUk is given by:

Ûk = RUB
H
D

0
B@BDRUB

H
D +FN

WTz }| {
ATR~nA

H
T IN

1
CA

| {z }
Z

�1

� (ADYk +FNA��yk) : (7)

(�)H denotes the Hermitian operation. RU is the autocovari-
ance matrix of the transmitted symbols Uk. RU is diago-
nal, assuming the tones are independently modulated, and has
nonzero entries for all used tones. R ~n is the noise autocovari-
ance matrix.

The first term of Z in (7) is diagonal; the second term is
not (unlessWT is a scaled identity matrix). However,WT is
a product of Toeplitz matrices, hence also Toeplitz. If only a
band of m diagonals around the main diagonal of WT is sig-
nificantly different from zero, with m � N , WT can be ap-
proximated quite well by a circulant matrixWC . It is said that
WT and WC are asymptotically equivalent [7]. The smaller
La and the less coloured the noise, the smaller m and the bet-
ter the approximation1. Using the DFT-based decomposition
of WC = INWDFN , Z in (7) can be approximated by a di-
agonal matrix ZD:

ZD = BDRUB
H
D +WD: (8)

Provided ZD is full rank, (7) reduces to an MMSE equalizer
that is decoupled per tone. The symbol estimate Ûk[n] ofUk[n]
only depends on the n-th instead of all N FFT outputs:

Ûk[n] = B�

D [n] (BD[n]B
�

D[n] +WD [n])| {z }
ZD [n]

�1
�

(AD[n]Yk[n] +FN(n; :)A��yk) (9)

where (�)� denotes complex conjugate and every element of
the form (�)D[n] equals the n-th diagonal element of the corre-
sponding diagonal matrix (�)D.

Equation (9) states that Ûk[n] can be obtained as a linear
combination of the n-th FFT output and La difference terms
�yk . Remarkably, this is the same result as was obtained in
[3]. There, the authors started from the traditional TEQ to de-
rive a receiver structure that optimizes the SNR per tone. The
derivation above shows that the per tone equalizer is close to
optimal (with accuracy depending on La and the noise colour)
if Lb � � and La < T with T the number of equalizer taps per

1Note that in case of an FIR channel with an order less than or equal to � and
coloured noise, the same circulant approximation of the noise autocovariance
matrix is needed to justify the use of a 1-tap FEQ per tone for the MMSE
equalizer.

tone. The decoupled equalizer in (9) justifies a scheme with
a moderate number of coefficients T � N per tone that can
be initialized recursively with training sequences and without
prior knowledge of channel model and signal statistics [4].

B. Case 2: La = 0; Lb > �

In this case, H(z) reduces to an FIR channel of order Lb.
We assume that H(z) has no zeros on the unit circle. The dif-
ference terms in y, �yk , as well as the coefficients of A(z)
vanish. Equation (5) reduces to

Yk = BDUk + FNB��uk + FN enk: (10)

It follows from (6) that � difference terms in u are zero, thanks
to the cyclic prefix. The contribution of the nonzero differ-
ence terms in (10) is denoted byFN

~B��~uk. Still, we haveN
equations in N + (Lb � �) unknowns. Extra transmit redun-
dancy can be used to reduce the number of unknowns at the
receiver. This redundancy must be added or is freely available:
in a practical system, some tones are not used and/or there are
pilot tones. We will refer to the set of unused and pilot tones as
“nulltones” UN

k . Assume for simplicity that we use the mini-
mal needed number of nulltones, i.e. Lb � �. The contribution
in (10) of pilot tones (P ) and used tones (U ) is defined as:

BDUk = B
P
DU

P
k +BU

DU
U
k (11)

whereUP
k andUU

k are column vectors with the pilot and used
subsymbols respectively;BP

D andBU
D contain the correspond-

ing columns of BD. Equation (10) can now be rewritten with
all unknowns on the right-hand side:

Yk �B
P
DU

P
k =

�
B
U
D FN

~B�

�
| {z }

B

�
U
U
k

�~uk

�
| {z }

Uk

+FNenk: (12)

The optimal MMSE per tone equalizer for a system with
sufficient transmit redundancy is then given by:

Ûk[n] = R
U
(n; :)B

H
�
BR

U
B
H
+FNRenIN��1

�

�
Yk �B

P
DU

P
k

�
(13)

where R
U

is the autocovariance matrix of U k: This equalizer
does not allow a decoupling per tone in the sense of (9). How-
ever, the zero forcing (ZF) equalizer for (12) does. Based on
the following 2-step ZF equalizer design (assume no noise is
present), we will obtain a suboptimal MMSE equalizer.
1. If Lb > �,BU

D is a tall matrix with a left nullspace spanned
by the columns ofBN

D , i.e. the columns of the diagonal matrix
BD, corresponding to the Lb�� nulltones. After left multipli-
cation of (12) withBNH

D , �~uk is given by:

�~uk =
�
B
NH

D FN
~B�

�
�1

B
NH

D

�
Yk �B

P
DU

P
k

�
: (14)
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Fig. 1. The generalized per tone equalizer.

Because of the sparse structure of BNH

D , �~uk is a linear com-
bination ofYN

k (i.e. the FFT outputs Yk[n], with n correspond-
ing to the set of nulltonesUN

k ) and the pilot symbolsUP
k .

2. Eliminating the contribution of �~uk in (12), Uk[n] can be
recovered as

Uk[n]=
1

BD [n]

�
Yk[n]��~uTkw1;n

�
=

1

BD [n]

�
Yk[n]�

h
Y
NT

k U
PT

k

i
w2;n

�
(15)

where w1;n and w2;n are tone-dependent equalizer coeffi-
cients.
The suboptimal MMSE equalizer, based on this ZF equalizer,
gives an MMSE estimate of �~uk in a first step and uses this
estimate to obtain Ûk[n] in the second step. The overall result
is2

Ûk[n] =
h
Yk[n] Y

NT

k U
PT

k

i
w3;n (16)

where w3;n contains the equalizer coefficients for tone n and
combines the n-th FFT output, the nulltone FFT outputs and
the pilot subsymbols. It is clear that the performance of this
suboptimal MMSE equalizer, compared to the optimal equal-
izer (13), improves with the SNR on the nulltones.

C. Case 3: arbitrary La and Lb

The general case with arbitraryLa andLb is the combination
of Case 1 and 2. A suboptimal MMSE equalizer can thus be
obtained by combining (9) and (16).
1. An MMSE estimate �ûk of �~uk is obtained as a linear
combination of the nulltone FFT outputs, YN

k , the difference

2For the sake of conciseness, the detailed MMSE formulas have been omit-
ted.

terms in y, �yk, and the pilot subsymbols,UP
k :

�ûk =
h
Y
NT

k �yTk U
PT

k

i
w4;n (17)

with w4;n the equalizer coefficients for tone n.
2. The MMSE symbol estimate Ûk[n] is then given by:

Ûk[n] =
�
Yk[n] �yTk �ûTk

�
w5;n (18)

=
h

Yk [n] Y
NT

k �yTk U
PT

k

i
wn (19)

where the last transition comes from (17). w5;n andwn are the
equalizer coefficients per tone.
Equation (19) suggests to extend the vector with difference
terms �yk (which is common for all tones) in the per tone
equalizer of [3] with TN nulltone FFT outputsYN

k and TP pi-
lot subsymbolsUP

k . The new structure is depicted in Fig. 1.
This equalizer can be initialized recursively without prior

knowledge of channel and signal statistics, similar to [4]. By
choosing a number of difference terms in y (T�1), the number
of nulltones (TN ) and a cyclic prefix length (�), the equalizer
identifies implicitly an IIR model with La = T � 1 and Lb =
� + TN .

IV. SIMULATION RESULTS

The conclusion of the previous section suggests that one can
trade-off the number of difference terms in y (T �1), the num-
ber of nulltones (TN ) and the cyclic prefix length (�). We
check the influence of these parameters in an ADSL context.
Simulations for several channel and noise configurations have
been done with consistent results. Here, we depict the perfor-
mance for an inline downstream channel of 4 km with addi-
tive white Gaussian noise. Four equalizer configurations are
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Fig. 2. Performance of several configurations for a 4 km inline channel.

compared: two configurations with only difference terms in y
(TN = 0), T = 16 and T = 32, and two configurations with
nulltones, T = 16 and TN = 2 or 3. The nulltones are the
pilot tone 64 and the unused tones 36 and 37 (36 is not used in
the configuration with 2 nulltones). The complexity is (almost)
linear in T+TN , so the configuration with T = 32 and TN = 0

is approximately twice as complex as the other configurations.
We compare the standardized ADSL prefix length � = 32 with
prefix lengths of � = 16 and � = 8. Fig. 2 shows the bitrate
for all configurations.

For all prefix lengths, the configurations with nulltones out-
perform the configuration with 32 difference terms. This effect
is stronger for shorter prefix lengths. This suggests that it is
better to increase B(z) with a few taps than to extend La + 1

from 16 to 32. Moreover, shorter prefix lengths (� = 8; 16) re-
sult in better performance than � = 32 when using nulltones:
reducing the prefix length decreases the overhead with respect
to the data rate while, on the other hand, it increases the in-

terblock interference. In fact, cyclic prefix and nulltones are
two ways of introducing transmit redundancy that can be traded
off to optimize performance.

V. CONCLUSIONS

We derived an equalization scheme for DMT-based trans-
mission over IIR channels. We concluded that the per tone
equalizer is a close approximation of the optimal MMSE equal-
izer if certain numerator and denominator conditions are ful-
filled. We generalized the per tone equalizer for arbitrary IIR
model order. This generalization is based on a suboptimal
MMSE criterion. The implementation is very similar to the
original per tone equalizer, extended with nulltones, i.e. un-
used and/or pilot tones. Simulations show that the use of null-
tones results in a better performance at a lower complexity.
Cyclic prefix and nulltones are two ways to introduce transmit
redundancy that can be traded off.
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