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Challenges for future communication systems

Users and providers want from communication systems:
Higher data rates
Reliable service
Inexpensive
Mobility, connectivity
Power/battery efficient
High spectral efficiency
Convergence of platforms
Scalability



These demands put enormous pressure on communication
systems and engineers who design them.

Mathematics could help ...
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“The Hinduistic Diversity of the Unity of the Heisenberg Group”
[Roger Howe]
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The Heisenberg group
Spreading sequence design for CDMA
Code design for MIMO
Pulse shape design for OFDM
High resolution radar via compressed sensing
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The Heisenberg group (1)

For x , ω ∈ R we define the translation operator by

Tx f (t) = f (t − x)

and the modulation operator by

Mωf (t) = e2πiωt f (t).

Tx and Mω “almost” commute

TxMω = e−2πixωMωTx ,

thus they commute if and only if x · ω ∈ Z.
Operators of the form TxMω or MωTx are called time-frequency
shift operators. We obtain for the composition of two such
time-frequency shift operators

(TxMω)(Tx ′Mω′) = e2πix ′ωTx+x ′Mω+ω′ .
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The Heisenberg group (2)

To make the operators TxMω, (x , ω) ∈ R× R, into a group we
“add” the torus T = R/Z = {e2πiτ : τ ∈ R} by introducing the
scalar operators

Sτ f (x) = e2πiτ f (x).

Now the set {
TxMωSτ , (x , y) ∈ R× R,e2πiτ ∈ T

}
becomes a group of unitary operators.

More abstractly, we consider R× R× T and define on it a
multiplication that is consistent with the composition before:

The Heisenberg group

(x , ω,e2πiτ ) · (x ′, ω′,e2πiτ ′
) = (x + x ′, ω + ω′,e2πi(τ+τ ′+x ′ω)).

With this multiplication, R× R× T becomes the (reduced
polarized) Heisenberg group H(R).
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The Heisenberg group (3)

Instead of defining Tx and Mω over R, we could use another
field, such as Z, CN or Zm

2 .
On CN : Instead of R×R× T we consider CN ×CN × TN where
TN is the sampled torus {e2πik/N , k = 0, . . . ,N − 1}.

T =


0 0 . . . 0 1

1 0
. . . 0

0 1 0
...

...
0 . . . 1 0

 ,
M = diag[e2πi0/N , . . . ,e2πi(N−1)/N ],

S = e2πi/N · I,

and
H(CN) =

{
T aMbSc , a,b, c ∈ {0, . . . ,N − 1}

}



The finite-field Heisenberg group H(Zm
2 )

We start with Z2: T2 and M2 are given by

T2 =

[
0 1
1 0

]
,M2 =

[
1 0
0 −1

]
, we have iT2M2 =: R2 =

[
0 −1
1 0

]
.

H(Z2) is generated by T2, M2, extended by i ·I2.
Note: could use (−1)·I2 instead, but i ·I2 gives richer structure.

The elements of H(Zm
2 ) are unitary 2m×2m matrices of the form

X0 ⊗ · · · ⊗ Xm−1, where Xk ∈ {T2,M2, I2,R2}.

H(Z m
2 ) has 22m+2 elements, each represented by a pair of

binary m-tuples. For instance:

T2 ⊗M2 ⊗ R2 ⊗ T2 ⊗ I2 ↔ (10110|01100)
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H(Zm
2 ) and mutually unbiased bases

Some important properties of H(Zm
2 ) (we denote N := 2m):

H(Zm
2 ) can be split into N + 1 commutative subgroups

S1, . . . ,SN+1.
These subgroups are disjoint, except for the identity
element.
Each subgroup Sk has N elements, i.e., each Sk is a
maximal commutative subgroup.

For each Sk there exists an orthonormal basis Uk of N
eigenvectors u(k)

1 , . . . ,u(k)
N that jointly diagonalizes all

elements of Sk .
ONBs are maximally incoherent:

|〈u(k)
m ,u(l)

n 〉| = 1√
N

if k 6= l ; m,n = 1, . . . ,N.

u(k)
m (j) ∈

{ ±1√
N
,
±i√

N

}
.
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Example

H(Z2
2) contains 16 elements, it can be split into 5 maximal

commutative subgroups, each containing 4 elements.
One such subgroup of H(Z2

2) is already diagonal, the four other
ones are diagonalized by Hadamard matrices Uk of the form

Uk := DkUD∗
k

where the Dk are diagonal matrices with entries ±1,±i and

U =
1
2


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

 .

U1 := D1UD∗
1 =

1
2


1 −i 1 i
i −1 i 1
1 i −1 i
−i 1 i 1

 .
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Some classical mathematical questions

Definition: Given a set of vectors V = {v1, . . . , vn} in Cd . The
incoherence µ of V is defined as

µ(V ) := max
j 6=k

|〈vj , vk 〉|

How can one arrange n lines through the origin in Rd (or
Cd ), such that the incoherence between them is as large
as possible?
How many equiangular lines exist in Rd? (i.e., |〈vj , vk 〉| = c
for all j 6= k )
How many equiangular k -dimensional subspaces (k ≤ d)
exist in Rd?
How many ONBs can we construct in Cd such that abs.
value of the inner product between vectors from different
ONBs is 1√

d
? → Mutually unbiased bases (MUB).



The Heisenberg group and Grassmannian packings

The Heisenberg group H(Zm
2 ) provides some constructive

answers to the questions above.
For instance there exist at most N2 equiangular lines in CN with
incoherence µ = 1√

N+1
.

Explicit constructions are known for N ≤ 12, they are of the
form

vj+k := T kM jx , j , k = 0, . . . ,N − 1

for a specifically designed vector x . Proofs (and thus
constructions) rely on special properties of H(CN).

Related to packings in Grassmannian spaces [Conway, Sloane,
Seidel, Calderbank], as well as concept of Grassmannian
frames [T.S., R.Heath].
Many problems in communications can be linked to these
questions!
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Agenda

The Heisenberg group
Spreading sequence design for CDMA
Code design for MIMO
Pulse shape design for OFDM
High resolution radar via compressed sensing



Spreading sequence design for CDMA (H(Zm
2 ))

We consider the downlink of a direct sequence CDMA system.
We assume equal power transmission, chip rate sampling, i.i.d.
Raleigh fading channel, spreading gain N and K users.
User n observes the N × 1 vector

y = hn

( K∑
k=1

xkuk

)
+ w

where xk ∈ {±1} is the data symbol transmitted to the k -th
user, hn is the channel gain for the n-th user, and u1, . . . ,uK are
the spreading sequences.

In matrix notation:

y = HUx + w

where U is an N × K spreading matrix, H is an N × N diagonal
matrix with Raleigh fading coefficients as entries, w is AWGN.
Typical setup: K = N and U is the Hadamard Walsh matrix.
Using a conventional matched filter, user k computes

x̃k = 〈y ,uk 〉 = hkxk 〈uk ,uk 〉+ hk

∑
k 6=l

xl〈ul ,uk 〉+ 〈w ,uk 〉.
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Overloaded CDMA

CDMA systems are interference limited.
Capacity translates to increasing the number of spreading
sequences.
Question: How many spreading sequences can be added to
the Walsh sequences of length N subject to the condition

|〈u, v〉|2 = 0 or
1
N
, for all u, v?

Answer: We can add N ONBs (thus N2 spreading sequences)
to the Walsh ONB, such that the above condition is satisfied.
They are obtained from the maximal commuting subspace
construction of the Heisenberg group H(Zm

2 ).
Designing spreading sequences for overloaded systems as
equiangular sequences or as MUBs is optimal in several ways
[R.Heath, A.Paulraj, T.S.]



Numerical comparison of spreading sequences



Other applications, further improvements

LTE - single-carrier OFDM, spreading OFDM.
Kashin representation should give even further
improvements (relies on results by Vershynin, random
matrix theory, dual to sparse representations a’la
Candes-Tao).
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MIMO Wireless communication



Code design for MIMO communication (H(Zm
2 ))

MIMO Communication: Multiple-input multiple-output.
In certain radio environments we get channel variation in both
space and time. If we use two (or more) antennas at the
transmitter and receiver we can exploit this diversity.
MIMO can provide significant increases in system performance
and capacity.

MIMO can even simplify hardware design. Atheros’ 802.11 chip
utilizes MIMO and CMOS to integrate power amplifier into
integrated circuit, which may allows them to reduce PAPR
problem of OFDM.
[For more on PAPR see this workshop: Oswald and Henkel:
“PAPR Reduction - Mathematical and Realization Aspects”]
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Space-time coding

Space-time coding takes advantage by correlating the data to
be transmitted both in space and time.

Assume we have M transmit antennas and we encode
information across T time intervals.

Codewords become matrices:

Antenna

X =


f11(S) f12(S) . . . f1N(S)
f21(S) f22(S) . . . f2N(S)

...
...

fT1(S) fT2(S) . . . fTN(S)

 Ti
m

e

S is a symbol (or bit) sequence
T symbol periods, N transmit antennas
fi,j are linear functions of S
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Alamouti code

Example: Two transmit antennas, and we transmit two symbols
(S = [s1, s2]) over two symbol periods

X (s1, s2) =

[
s1 s2
−s∗2 s∗1

]
Note that

X = <[s1]I2 + =[S1]M2 + <[S2]T2 + =[S2]R2

thus underlying the Alamouti code are the orthogonal
coefficient matrices for H(Z2) (Pauli matrices).
Alamouti code is an example of an orthogonal space-time block
code.
Want to express codewords as linear combination of specific
coefficient matrices

X =
N∑

k=1

akCk



(Quasi)Orthogonal space time block codes

Calderbank et al. have developed a general theory for
designing orthogonal space time block codes (OSTBC). The
coefficient matrices Ck of such OSTBC satisfy (among others):

each Ck is unitary
anti-Hermitian C∗

k = −Ck

anti-commuting CkCj + CjCk = 0, j 6= k
OSTBCs are easy to decode.
Unfortunately they exist only for very specific dimensions, i.e.,
for dimensions 2, 4, 8. But code rate for dim. 4 and 8 is low.
Quasiorthogonal space time block codes:
Relax orthogonality requirement, decoding becomes more
expensive, but higher rate codes become possible.
Many quasiorthogonal STBCs are based on H(Zm

2 ) (e.g.
construction by A.Sezgin)



Grassmannian Beamforming for MIMO Systems

Transmit and receive beamforming is a low-complexity
technique for exploiting the diversity of MIMO systems.
Optimal performance requires complete channel knowledge at
transmitter. Since channel state information (CSI) is gathered
at receiver, CSI needs to be fed back to transmitter.

In practice the feedback channel has often very low bandwidth.
Thus instead of the exact CSI, the receiver will send a heavily
quantized (and maybe very inaccurate) version of CSI.
Optimal low-rate quantization strategies for MIMO feedback
channels are highly non-trivial.
Instead of sending a poorly quantized CSI, it is better to
predesign a quantization codebook and then simply send the
index of the nearest codeword.
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Feedback codebook design for MIMO

Say, the codebook is C = {C1, . . . ,Cn}. If

min
k=1,...,n

||CSI − Ck ||

is attained by Cj then we simply feed back index j .
E.g., if we have a 3-bit feedback channel we can use n = 8.
How shall optimal feedback codebook be designed for MIMO?

In case of i.i.d. Raleigh fading channel one can show
[R. Heath,D. Love, T.S.] that optimal codebook design
criterion is linked to Grassmannian packings.
Algebraic constructions are based on H(Zm

2 ).
Our codebook constructions are used in 802.16e standard
(WIMAX).
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Basic communication scheme (1)

Channel
encocder

Source
encoder

Channel
decoder

decoder
Source

Information
User of 

Information
Source of

Estimated
messsage signalMessage signal

Transmitted signal Received signal
Channel

Modulator

ReceiverTransmitter

+ Equalizer
Demodulator



Basic communication scheme (2)

Transmitter: Let x = {xk}k∈I be the discrete data to be
transmitted (for simplicity assume xk ∈ {+1,−1}. Let {ϕk}k∈I
be a family of (bandlimited) functions – the transmission pulses.
The (continuous-time) signal to be transmitted is

s(t) =
∑
k∈I

xkϕk (t)

Channel: H is the operator representing the radio channel. The
received signal is

r = Hs + w

Receiver: The discrete data y = {yk}k∈I are extracted from r
by computing

yk = 〈r , ψk 〉, k ∈ I

where {ψk}k∈I is a family of receiver functions. For simplicity
we assume ϕk = ψk .



Basic communication scheme (3)

We introduce the coefficient operator C by

Cr = {〈r , ϕl〉}l∈I

and note that s = C∗x . Then

y = CHC∗x

Defining the matrix A = [Ak ,l ]k ,l∈I , where Ak ,l = 〈Hϕl , ϕk 〉
and using linearity of H we get

CHC∗x = Ax = y
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Equalization ...

We need to solve Ax = y .
Problems:

A is an infinite-dimensional, or very large, matrix
Application of A or inversion of A may be very expensive
The computation of C∗x and Cy may be expensive
A and H are a priori not known at the receiver (requires
channel estimation)

Ideal case: choose {ϕk} such that A is diagonal and
computation of C∗x and Cr is cheap.
For diagonal A, MMSE equalization becomes identical to ML,
since each yk can be decoded individually by computing
x̃k = yk/Ak ,k followed by solving xk = argmin|x̃k − (±1)|.
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Fixed wireless communication

Assume that transmitter and receiver are not moving.

Multipath propagation causes signal to arrive at receiver with
different delays and different amplitudes: Transmission pulses
are spread out in time (“delay spread”).



Linear time-invariant channels

Let s denote the transmitted signal, the received signal r is
given by (in absence of AWGN)

r(t) = (Hx)(t) = (h ∗ s)(t) =

+∞∫
−∞

h(t − τ)s(τ)dτ

where H represents the linear operator modeling the wireless
channel, h is the impulse response.
The emitted signal s is of the form

s(t) =
∑

k

xkϕk

where ϕk are transmission pulses (yet to be determined!).



Equalization and channel diagonalization

We want a very simple equalizer at the receiver.

yl = 〈r , ϕl〉 =
∑

k

xk 〈Hϕk , ϕl〉 =
∑

k

Al,kxk

If the ϕk are eigenvectors of H with eigenvalues λk and if the
ϕk are mutually orthogonal, then

〈Hϕk , ϕl〉 = 〈λkϕk , ϕl〉 = λl

thus A is diagonal with Ak ,k = λk .
Eigenvectors of H are e2πik ·, eigenvalues are λk = ĥ(k). Thus
choose ϕk (t) = e2πikt , and we get the equalized data

x̃l =
yl

ĥ(l)
.

In presence of AWGN we simply round x̃l to ±1, this is
statistically optimal (maximum likelihood).



Mobile wireless communication

Moving transmitter and/or receiver cause the radio channel to
be time-varying. Relative motion between transmitter and
receiver results in Doppler effect. Thus in addition to delay
spread caused by multipath propagation, signals are subject to
Doppler spread.
We can no longer diagonalize operator H by Fourier transform.
No transform will simultaneously diagonalize all channels.

Goal: We want to design an orthonormal system {ϕk}k∈I such
that the matrix A with entries

Ak ,l = 〈Hϕl , ϕk 〉

is “as diagonal as possible” for a large class of mobile channels.
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Matrices with off-diagonal decay

How can we quantify “as diagonal as possible”?
Use off-diagonal decay of A(σ) as measure for nearness of A to
a diagonal matrix.
E.g., if

|Ak ,l | ≤ c(1 + |k − l |)−s, s > 0,

then larger s means closer to diagonal.

Even better would be if the off-diagonal decay of A satisfies

|Ak ,l | ≤ c1e−c2|k−l|.



Representation of mobile channels

The mobile wireless channel can be written as

y(t) = Hs(t) =

+∞∫
−∞

ht(τ)s(t − τ)dτ

where ht is the impulse response at time t . By interpreting ht as
function of two variables, i.e., ht(τ) = h(t , τ) we can write

r(t) = Hs(t) =

+∞∫
−∞

h(t , t − τ)s(τ)dτ

Alternatively we can write

Hs(t) =

∫∫
σ̂(η, τ)MηT−τs(t)dτdη

where
σ̂(·, τ) = F1h(−·, τ)
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Mobile communication and pseudodifferential
operators

We have the representation

Hs(t) =

∫∫
σ̂(η, τ)MηT−τx(t)dτdη (1)

H = Hσ is a pseudodifferential operator with (Kohn-Nirenberg)
symbol σ. σ̂ is called the spreading function.

Any reasonable linear operator can be written in the form (1).
The different operators can be characterized in terms of
properties of their symbol σ or their spreading function σ̂.
What properties of σ̂ characterize operators representing
mobile channels?
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Mobile channels: quantitative analysis

Delay spread: energy of impulse response decays
exponentially in time: for fixed τ there exist constants a, c > 0
such that

|h(t , τ)|2 ≤ ce−a|t |,

Doppler spread: Doppler shift ηθ is given by

ηθ =
v
λ

cos θ,

where v is velocity v , λ is wave length, θ is the angle between
direction of moving object and direction of arrival of radio wave.
Maximal Doppler shift νmax = v/λ. Hence Doppler shift of
carrier frequency ωc is confined to [ωc − νmax, ωc + νmax] and
σ̂(η, u) has compact support w.r.t. η for fixed u.
Properties of delay spread and Doppler spread imply that
spreading function σ̂ is localized.
(Extreme case: if σ̂ = δ then Hσ = I).
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Localization of spreading function

Spreading function σ̂(η, u)

[Data: courtesy of Nokia]



Pseudodifferential operators

Theorem: Let Hσ represent a narrowband mobile radio
channel. Then σ belongs to the modulation space M∞,1

w (R2)
where w is an exponentially increasing weight function.

M∞,1
w is also known as weighted Sjöstrand class.

Could also use model σ as bandlimited function, which leads to
underspread operators. Pioneering work by W. Kozek on
approximate diagonalization of underspread operators.
We use M∞,1

w as symbol space for σ and look for orthonormal
functions {ϕk}k∈I such that the matrix A(σ) with entries

A(σ)l,k = 〈Hσϕk , ϕl〉, k , l ∈ I.

is as diagonal as possible for all σ ∈ M∞,1
w (R2).
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Gabor systems as transmission functions

Definition: A Gabor system consists of functions {ϕma,nb}m,n∈Z
of the form

ϕma,nb(t) = MnbTmaϕ(t), m,n ∈ Z

where ϕ ∈ L2(R) is typically a function that is well localized in
time and frequency (e.g., a Gaussian).
We denote such as system by (ϕ,a,b).

The coefficient operator C : L2(R) 7→ `2(aZ× bZ) is given by

Cf = {〈f , ϕma,nb〉}m,n∈Z.

and C∗ : `2(aZ× bZ) 7→ L2(R) is given by

C∗{xm,n} =
∑
m,n

xm,nϕma,nb.



Some properties of Gabor systems (1)

We have:

A(σ) = C∗HσC = {〈Hσϕma,nb, ϕm′a,n′b〉}m,n,m′,n′∈Z.

Necessary conditions for invertibility of A(σ):
Linear independence of (ϕ,a,b).

To maximize data rate: range(C∗) should be as large as
possible, ideally: whole L2(R).
Linear independence of (ϕ,a,b) requires a · b ≥ 1.
For (ϕ,a,b) to span all of L2(R) we need a · b ≤ 1
[Perelomov, Rieffel, Daubechies,...].

For (ϕ,a,b) to be an ONB for L2(R) one needs a · b = 1.
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Some properties of Gabor systems (2)

Balian-Low Theorem: If (ϕ,a,b) is an ONB for L2(R), then ϕ
cannot be well localized in time and frequency.

Hence having an orthonormal Gabor system (ϕ,a,b) with good
time-frequency implies incompleteness and thus a · b > 1!
Typical choice in practice a · b ∈ [6

5 ,2]. a · b = 2 means we
suffer 50% loss of spectral efficiency.
From now on we assume a · b > 1.

Alternatively, we can use Wilson orthonormal bases (similar to
Offset-QAM OFDM), which can be easily constructed from
Gabor systems.



Optimal approximate diagonalization

Theorem [T.S.’04] The best approximate diagonalization of the
mobile channel Hσ by an ONS is obtained by Gabor systems
(ϕ,a,b) where ϕ decays exponentially in time and frequency. In
that case A(σ) has exponential off-diagonal decay.

Proof-sketch: Results from pseudodifferential operator theory
show that Hσ with σ ∈ M∞,1

w , can be characterized by
off-diagonal decay of the matrix A(σ). This characterization is
if-and-only-if!
Next use that such matrices form a Banach algebra.
Thus mobile wireless channels Hσ form a Banach algebra.
Now assume that some other system achieves better
approximate diagonalization, i.e., A(σ) would have faster than
exponential decay.
But then the Banach algebra property would be violated.
Still need to discuss design of ϕ.
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Orthogonal Frequency Division Multiplexing

OFDM is a multicarrier system: bandwidth is split into
subbands (subcarriers) and a block of data is transmitted
simultaneously across subbands.



OFDM [contd.]

Assume we split bandwidth Ω into N subbands and let
F = Ω/N (carrier separation). Let {xk ,l}N−1

l=0 be the data to be
transmitted at time slot k . Let a be the time interval (symbol
period) between the transmission of two data blocks. The
transmitted OFDM signal is then

s(t) =
∑
k∈Z

N−1∑
l=0

xk ,lϕ(t − kT )e2πilFt ,

where ϕ is a prototype transmission pulse.
Transmission pulses have Gabor-structure with T = a,F = b.



Pulse shape design for OFDM (1)

Usually ϕ,T ,F are chosen such that {ϕmT ,nF}m,n∈Z is an ONS.
Simple choice that yields orthogonal system:

ϕ = χ[0,T ′], T ′ ≤ T ,T = 1/F .

This is used in most current OFDM systems.
By letting T ′ < T we effectively insert a guard interval between
two temporally adjacent pulses.

Rectangular pulse plus guard interval is useful in case of
multipath but it is a bad choice in presence of Doppler spread.
Reason: if ϕ = χ[0,T ′] then ϕ̂ = sinc1/T ′ . While shifted
sinc-functions {sinc1/T ′(· −mT )} are orthogonal, a small
perturbation caused by Doppler spread completely destroys
orthogonality and we get large interference.
Recall: want A(σ) = {〈HσϕmT ,nF , ϕmT ′,nF ′〉}m,n,m′,n′∈Z to be
(almost) diagonal. But A(σ) is only (block-)diagonal if there is
no Doppler spread, with Doppler spread we have
|A(σ)m,n,m′,n′ | ≈ O(‖(m,n)− (m′,n′)‖−1).
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Pulse shape design for OFDM (2)

Our theory implies: In case of severe Doppler spread we
should choose ϕ with exponential time-frequency decay, since
this would result in matrix A(σ) whose off-diagonal entries
decay like O(e−‖(m,n)−(m′,n′)‖).
We also want ϕma,nb to be an orthonormal system!
But which ϕ shall we choose?
Let g(t) := e−πt2

. We know that the Gaussian minimizes
Heisenberg’s Uncertainty Principle. However (g,T ,F ) is not an
ONS.
Want ONS (ϕ,T ,F ) such that ϕ is “as close as possible” to g.



Transmission pulse design for OFDM (1)

Theorem:[Janssen-T.S.,’02]: Assume (ψ,T ,F ) is a Gabor
Riesz basis for a subspace of L2(R) and let R be the Gram
matrix with entries

Rm,n,m′,n′ = 〈ψm′T ,n′F , ψmT ,nF 〉, m,n,m′,n′ ∈ Z.

Then the function ϕopt that minimizes

‖ψ − ϕ‖2

among all functions ϕ such that (ϕ,T ,F ) is an ONS, is given by

ϕopt :=
∑
m,n

[R− 1
2 ]0,0,m,nψmT ,nF

Banach square root theorem implies that if ψ is time-frequency
well-localized, then so is ϕ!
If ψ decays exponentially in time and frequency, then so does ϕ!
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Transmission pulse design for OFDM (2)

Theoretical framework leads to the following practical algorithm
for designing optimal OFDM transmission pulses [T.S.’02/’03]:

1 Start with Gabor system (ψ,T ,F ) with e.g., ψ(t) = e−αt2
.

2 Compute ϕ =
∑

m,n[R
− 1

2 ]0,0,m,nψmT ,nF

3 Include various important practical constraints by
formulating them as projection onto convex sets.

4 Iterate between step 2 and step 3 until a prescribed
tolerance is reached.

This algorithm is numerically extremely efficient (due to nice
properties of H(CN)).
Patent pending (jointly with A. Paulraj)



Practical application

Pulse-shaping method has been used in collaboration with
Special Communication Systems to design new OFDM-based
modem for short-radio-wave communications.

Pactor III

Landfall Navigation says about Pactor III:
“It is the most amazing thing we have seen in over 35 years of
transmitting data over radio”
(www.landfallnavigation.com/pactor.html).
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Agenda

The Heisenberg group
Spreading sequence design for CDMA
Code design for MIMO
Pulse shape design for OFDM
High resolution radar via compressed sensing



High resolution radar and compressed sensing

Resolution in (monostatic) radar is limited by the Uncertainty
Principle.
New theory of compressed sensing Donoho, Candes, Tao,... is
tailored to recover sparse objects from few measurements.
Their framework can be extended to operator identification and
thus to radar.
We (M.Herman, T.S.) use specific properties of H(CN) as well
as the Uniform Uncertainty Principle a’la Candes-Tao to beat
the Radar Uncertainty Principle

Key fact: Let N be a power of a prime number ≥ 5 and
x(k) = e2πik3/N for k = 0, . . . ,N − 1.
Then

T kMnx , k ,n = 0, . . . ,N − 1

generates mutually unbiased bases.
See also presentation by G. Pfander.
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Compressed sensing radar

Comparison of conventional radar with compressed sensing
radar at SNR of 10dB.



The Heisenberg group H(Zm
2 ) will be at the heart of next

generation wireless communication systems.



In theory there is no difference between theory and practice,
in practice there is ....

[Yogi]
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