Soap bubbles and polyhedra

John M. Sullivan

Institut für Mathematik, Technische Universität Berlin Berlin Mathematical School

> Modern Mathematics Jacobs Univ., Bremen 2015 July 8

Soap bubbles

• Why are they round?

John M. Sullivan (TU Berlin)

Soap bubbles and polyhedra

Soap bubbles

- Why are they round?
- Soap film minimizes area
- Symmetrization (Schwarz 1884)

John M. Sullivan (TU Berlin)

Bubble clusters

several bubbles stuck together

Double bubble

- Two bubbles with given volumes
- 1990s

John M. Sullivan (TU Berlin)

Soap bubbles and polyhedra

Triple bubble

- Three bubbles with given volumes
- (2D Wichiramala 2004)

Foam

• up to 1000s of bubbles

John M. Sullivan (TU Berlin)

Soap bubbles and polyhedra

• up to 1000s of bubbles

John M. Sullivan (TU Berlin)

Soap bubbles and polyhedra

- connect four cities
- square with $s \approx 400$ km
- length 3s

- connect four cities
- square with $s \approx 400$ km
- length $2\sqrt{2}s \approx 2.83s$

- connect four cities
- square with $s \approx 400$ km
- length $(1 + \sqrt{3})s \approx 2.73s$

- connect four cities
- square with $s \approx 400$ km
- length $(1 + \sqrt{3})s \approx 2.73s$
- $X \rightarrow 2 Y$

Bubble clusters in Flatland

- circular arcs
- triple junctions
- equal 120° angles

Plateau's first Rule

- Plateau borders
- triple junctions
- equal 120° angles

Point singularities

John M. Sullivan (TU Berlin)

Soap bubbles and polyhedra

2015 July 8

Cones

• Cone over a network in the sphere

dual networks

- dual net to cube
- spherical octahedron

dual networks

- dual net to octahedron
- spherical cube
- stereographic projection gives 2D cluster

Platonic solids

- three have triangular faces
- tetrahedron, octahedron, icosahedron

Convex deltahedra

- three Platonic solids
- two further bipyramids
- three further polyhedra

• Tetrahedron in soapy water

• Cube in soapy water?

Cube in soapy water

Spherical tetrahedron in soapy water

John M. Sullivan (TU Berlin)

Soap bubbles and polyhedra

• Spherical cube in soapy water?

• Spherical cube in soapy water

• Symmetry-breaking in 3 ways

• Prism in soapy water

Soap bubbles and polyhedra

Pentagonal prism in soapy water

12-vertex net in soapy water

• 14-vertex net in soapy water

I6-vertex net in soapy water

Dodecahedron in soapy water

Higher dimensions

- Foams in the sphere
- from polyhedra in 4D

