Geometric Knot Theory

John M. Sullivan

Institut für Mathematik, Technische Universität Berlin Berlin Mathematical School

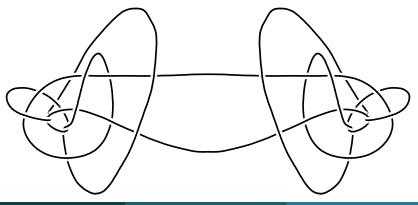
> Modern Mathematics Jacobs Univ., Bremen 2015 July 7

Berlin opportunities

- International graduate school
- From Bachelor's to Doctorate
- Courses in English at three universities
- www.math-berlin.de

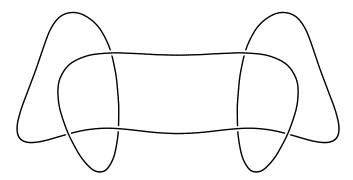
Knots and Links

- Closed curves embedded in space
- Classified topologically up to isotopy
- Two knotted curves are equivalent (same knot type) if one can be deformed into the other



Knots and Links

- Closed curves embedded in space
- Classified topologically up to isotopy
- Two knotted curves are equivalent (same knot type) if one can be deformed into the other



(Topological) Knot Theory

- Classify knot/link types
- Look for easily computed invariants to distinguish knots/links
- 3-manifold topology of complement

Geometric Knot Theory

Two threads:

Geometric properties of knotted space curve

determined by knot type or implied by knottedness (e.g. Fáry/Milnor: $TC > 2\pi br \ge 4\pi$)

Optimal shape for a given knot

usually by minimizing geometric energy

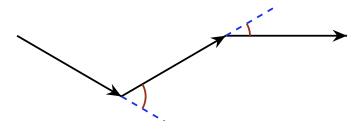
Geometric optimization problems:

seek best geometric form for topological object

Total Curvature

• For *K* smooth, TC :=
$$\int_K \kappa \, ds$$

• For *K* polygonal, TC := sum of turning angles (exterior angles)

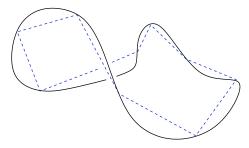


Total Curvature

Definition (Milnor)

For *K* arbitrary, TC(K) := supremal TC of inscribed polygons

- Achieved by any limit of ever finer polygons.
- Analogous to Jordan's definition of length.



Curves of Finite Total Curvature

- FTC means TC $< \infty$
- Unit tangent vector Bounded variation (BV) function of arclength
- Curvature measure

 $dT = \kappa N \, ds$ as Radon measure

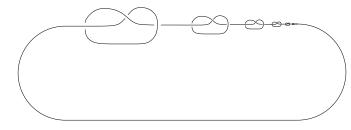
• Countably many corners where $T_+ \neq T_-$

(curvature measure has atom)

See my survey in *Discrete Differential Geometry*, Birkäuser, 2008; arXiv:math.GT/0606007

Approximation of FTC curves

- FTC knot has isotopic inscribed polygon [Milnor]
- Tame (not wild) knot type



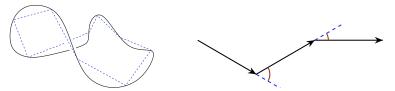
- K, K' each FTC and " C^1 -close" \implies isotopic [DS]
- FTC \iff "geometrically tame"

Projection of FTC curves

Theorem

Given an FTC curve $K \subset \mathbb{R}^n$ and some k < n, consider all projections of K to $\mathbb{R}^k s$. Their average TC equals TC(K).

- Average is over Grassmannian
- Suffices to prove for polygons (dominated convergence) and thus for single corner

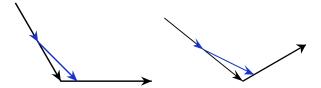


Projection of FTC curves (Proof)

- Given angle θ, average turning angle of its projections is some function fⁿ_k(θ)
- By cutting corner into two, f_k^n additive $f_k^n(\alpha + \beta) = f_k^n(\alpha) + f_k^n(\beta)$
- Continuous additive function is linear

$$f_k^n(\theta) = c_k^n \, \theta$$

• What is the constant c_k^n ? Should we try $\theta = \pi/2$?



Projection of FTC curves (Proof)

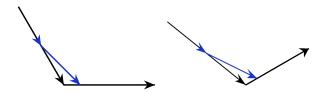
- Given angle θ, average turning angle of its projections is some function fⁿ_k(θ)
- By cutting corner into two, f_k^n additive

 $f_k^n(\alpha + \beta) = f_k^n(\alpha) + f_k^n(\beta)$

Continuous additive function is linear

$$f_k^n(\theta) = c_k^n \, \theta$$

• Any projection of a cusp (angle π) is a cusp, so $f_k^n(\pi) = \pi$ Hence $c_k^n = 1$ as desired



Fenchel's Theorem

Corollary

 $\gamma \subset \mathbb{R}^n$ closed curve $\implies TC(\gamma) \ge 2\pi$

Proof:	
???	

Fenchel's Theorem

Corollary

 $\gamma \subset \mathbb{R}^n$ closed curve $\implies TC(\gamma) \ge 2\pi$

Proof 1:

Consider any inscribed 2-gon.

Proof 2:

This is true in \mathbb{R}^1 , where every angle is 0 or π

Fáry/Milnor Theorem

Theorem

$$K \subset \mathbb{R}^3$$
 knotted $\implies TC(K) \ge 4\pi$

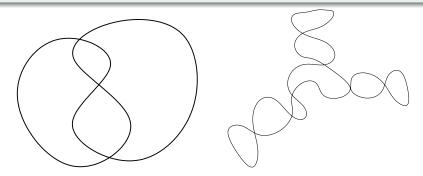
Proof [Milnor]:

No projection to \mathbb{R}^1 can just go up & down, so true in \mathbb{R}^1

Fáry/Milnor Theorem: Fáry's Proof

Proof [Fáry]:

True for knot diagrams in \mathbb{R}^2 because some region enclosed twice (perhaps not winding number two)



Second Hull: Intiuition

- Fary/Milnor says knot K "wraps around" twice
- Intuition says K "wraps around some point" twice
- Some region (second hull) doubly enclosed by K
- How to make this precise?

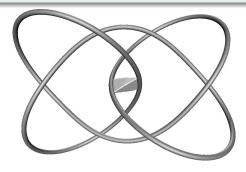
Second hull: Definition

Convex hull

 $p \in \operatorname{cvx}(K) \iff$ every plane through p cuts K (at least twice)

Definition

 $p \in n^{th}$ hull of $K \iff$ every plane through p cuts K at least 2n times



Second hull: Theorem

Amer. J. Math 125 (2003) pp 1335–1348, arXiv:math.GT/0204106 with Jason Cantarella, Greg Kuperberg, Rob Kusner

Theorem

A knotted curve has nonempty second hull



Second hull: Proof

Proof for prime FTC knot:

An *essential halfspace* contains all of *K* except one unknotted arc. Intersection of all essential halfspaces is (part of) second hull.

One notion of "where knotting happens"

John M. Sullivan (TU Berlin)

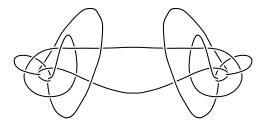
Geometric Knot Theory

Möbius energy

Inspired by Coulomb energy (repelling electrical charges)

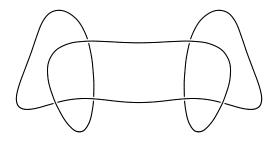
$$\iint_{K \times K} \frac{dx \, dy}{|x - y|^p}$$

- Renormalize to make this finite [O'Hara]
- Scale-invariant for p = 2
- Invariant under Möbius transformations [FHW]



Möbius energy

- Minimizers for prime knots [FHW]
- Probably no minimizers for composite knots
- Flow perhaps untangles all unknots



Ropelength

Definition

- Thickness of space curve = reach
 - = diameter of largest embedded normal tube
- Ropelength = length / thickness

Positive thickness implies $C^{1,1}$

Definition

• Gehring thickness = minimum distance between components

works with Milnor's link homotopy

Ropelength

Inventiones **150** (2002) pp 257–286, arXiv:math.GT/0103224 with Jason Cantarella, Rob Kusner

Results

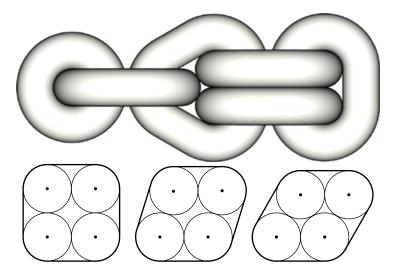
- Minimizers exist for any link type
- Some known from sharp lower bounds
- Simple chain = connect sum of Hopf links Middle components stadium curves: not C²



John M. Sullivan (TU Berlin)

Ropelength

<u>Minimizers</u>



Lower bounds

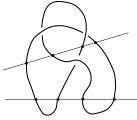
Geom. & Topol. 10 (2006) pp 1–26, arXiv:math.DG/0408026 with Elizabeth Denne and Yuanan Diao

Theorem

K knotted \implies ropelength ≥ 15.66

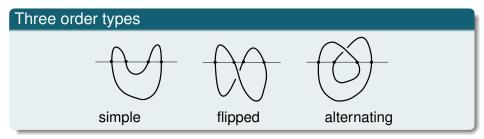
(within 5% for trefoil)

Proof uses essential alternating quadrisecants:



Quadrisecant

- Line intersecting a curve four times
- Every knot has one (Pannwitz 1933 Berlin)



Theorem (Denne thesis)

Every knot has an essential alternating quadrisecant

(Essential means no disk in $\mathbb{R}^3 \setminus K$ spans secant plus arc of *K*.)

John M. Sullivan (TU Berlin)

Geometric Knot Theory

Lower bound: Proof

Theorem

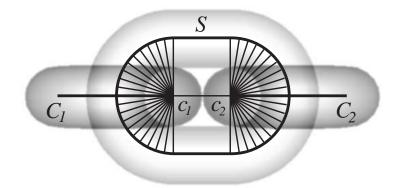
Ropelength > 15.66 *for any knotted curve*

- Denne gives essential alternating quadrisecant *abcd*
- Write lengths as r := |a b|, s := |b c|, t := |c d|
- Scaling to thickness 1, we have $r, s, t \ge 1$
- Define $f(x) := \sqrt{x^2 1} + \arcsin(1/x)$
- $\ell_{ac} \ge f(r) + f(s), \ \ell_{bd} \ge f(s) + f(t), \ \ell_{da} \ge f(r) + s + f(t),$
- $\ell_{cb} \ge \pi$ and $\ell_{cb} \ge 2\pi 2 \arcsin s/2$ if s < 2.
- Minimize sum separately in *r*, *s*, *t*.

Criticality

Balance Criterion: tension vs. contact force

Characterizes ropelength-critical links by force balance



Criticality papers

Gehring case – no curvature bound

Geom. & Topol. 10 (2006) pp 2055–2115,

arXiv:math.DG/0402212

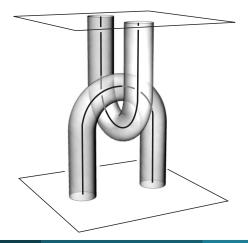
with Jason Cantarella, Joe Fu, Rob Kusner, Nancy Wrinkle

Ropelength case – with curvature bound

Geom. & Topol. **18** (2014) pp 1973–2043, arXiv:1102.3234 with Cantarella, Fu, Kusner

The clasp

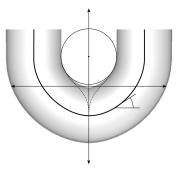
- Clasp: one rope attached to ceiling, one to floor
- Again with semicircles?

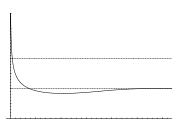


John M. Sullivan (TU Berlin)

The Gehring clasp

- Gehring clasp has unbounded curvature (is $C^{1,2/3}$ and $W^{2,3-\varepsilon}$)
- Half a percent shorter than naive clasp



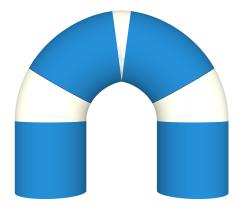


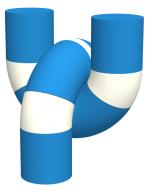
The Gehring clasp

- Gehring clasp has unbounded curvature (is $C^{1,2/3}$ and $W^{2,3-\varepsilon}$)
- Half a percent shorter than naive clasp

The tight clasp

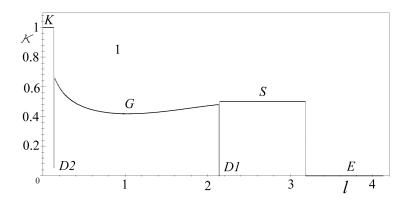
- Tight clasp slightly longer
- Kink (arc of max curvature) at tip





The tight clasp

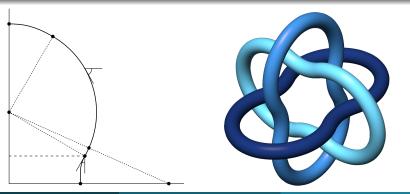
- Tight clasp slightly longer
- Kink (arc of max curvature) at tip



Example Tight Link

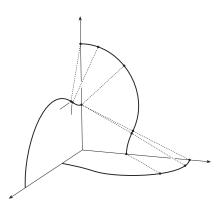
Critical Borromean rings - IMU logo

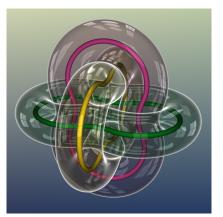
- maximal (pyritohedral) symmetry, each component planar
- piecewise smooth (42 pieces in total)
- some described by elliptic integrals



Borromean Rings

- Uses clasp arcs and circles; 0.08% shorter than circular
- Curvature < 2 everywhere \implies also ropelength-critical





Interlude

Linked table stands

From Africa, 3 components, Borromean rings

John M. Sullivan (TU Berlin)

Geometric Knot Theory

Linked table stands

From Ghana, 7 components

John M. Sullivan (TU Berlin)

Interlude

Linked table stands

From Turkey, 8 components!

John M. Sullivan (TU Berlin)

Geometric Knot Theory

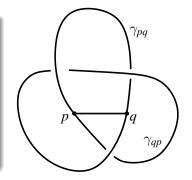
2015 July 7

Distortion

Notation

- Given $p, q \in K$, subarcs γ_{pq}, γ_{qp} have lengths ℓ_{pq}, ℓ_{qp}
- $d(p,q) := \min(\ell_{pq}, \ell_{qp})$
- $\delta(p,q) := d(p,q)/|p-q|$ arc/chord ratio

• Distortion:
$$\delta(K) := \sup_{p,q} \delta(p,q)$$
.



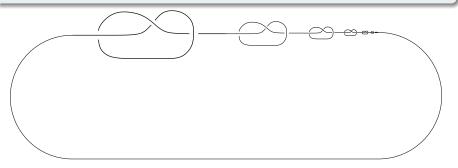
Gromov

- $\delta(K) \ge \pi/2$, equality only for round circle
- Can every knot be built with $\delta < 100$?

Distortion: Upper bounds

Computations

- Trefoil can be built with $\delta < 8.2$
- Open trefoil has more distortion, but still $\delta < 11$
- So infinitely many (even wild) knots with $\delta < 11$



Distortion: Lower bounds

Proc. AMS **137** (2009) pp 1139–1148, arXiv:math.GT/0409438v2 with Elizabeth Denne

Theorem

K knotted $\implies \delta > 5\pi/3$

(within 30% for trefoil)

Theorem (Pardon)

Torus knot $T_{p,q}$ *has* $\delta > \min(p,q)/160$

Theorem (Studer)

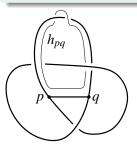
 $\delta(T_{2,q}) \leq 7q/\log q$

Essential arcs

Given $p, q \in K$, when is γ_{pq} essential?

- Construct free homotopy class h_{pq} in $\mathbb{R}^3 \smallsetminus K$
- h_{pq} parallel to $\gamma_{pq} \cup \overline{qp}$, zero linking with K

• γ_{pq} essential $\iff h_{pq}$ nontrivial $\iff \gamma_{pq} \cup \overline{qp}$ spanned by no disk in $\mathbb{R}^3 \setminus K$

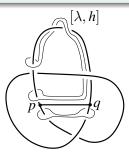


- K unknotted \implies all arcs inessential ($\pi_1 = H_1$)
- γ_{pq} and γ_{qp} inessential $\implies K$ unknotted (Dehn)

Essential secants

Definition

Secant \overline{pq} essential if both γ_{pq} and γ_{qp} are



• $\lambda \in \pi_1$ is meridian

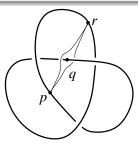
• Commutators $[\lambda, h_{pq}] = [\lambda, h_{qp}]$ nonzero only when \overline{pq} essential

Arcs becoming essential

As *r* varies, when does γ_{pr} become essential?

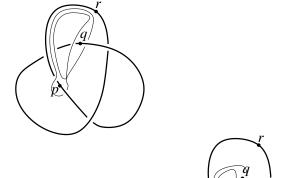
- Change in h_{pr} happens when \overline{pr} crosses $q \in K$
- Change is $[\lambda, h_{pq}] = [\lambda, h_{qr}]$

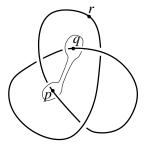
• Both \overline{pq} and \overline{qr} must be essential

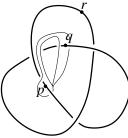


Distortion Essential secants

When pr becomes essential, pq is essential







John M. Sullivan (TU Berlin)

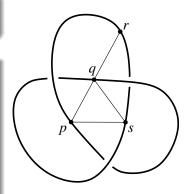
Distortion: Theorem

Theorem

 $\delta \geq 5\pi/3$ for any knot

Proof:

- Find shortest essential secant ps
- Scale so |p s| = 1
- Find first $r \in \gamma_{ps}$ with γ_{pr} essential
- Get $q \in K \cap \overline{pr}$
- If *q̄x* essential ∀*x* ∈ γ_{ps} then γ_{ps} stays outside B₁(q), so ℓ_{ps} ≥ (5/6)2π



To become inessential, must go outside $B_2(q)$, thus even longer