The McKay correspondence for quotient surface singularities
Oswald Riemenschneider, Universität Hamburg

The original McKay correspondence establishes a bijection between the set of conjugacy classes of finite subgroups $\Gamma \subset \text{SL}(2, \mathbb{C})$ (that is - by abuse of language - the set of binary polyhedral groups) and the set of Dynkin-diagrams of type ADE via representation theory of Γ. This correspondence can be interpreted geometrically by

i) associating to a (finite dimensional complex) representation of Γ geometric objects on the Klein singularity $X_\Gamma := \mathbb{C}^2/\Gamma$ resp. on its minimal resolution \tilde{X}_Γ, and

ii) studying their intersection behaviour with the irreducible components of the exceptional divisor E_Γ.

For general quotient surface singularities X_Γ, Γ a finite (small) subgroup of $\text{GL}(2, \mathbb{C})$, the situation is more complicated since there exist always fewer irreducible components of E_Γ than nontrivial irreducible representations. Nevertheless, one has a similar McKay correspondence if one considers only the smaller class of special representations.

I will discuss these older results together with a recent construction of \tilde{X}_Γ in terms of a Γ–invariant Hilbert scheme which gives a new understanding of the classical and the generalized geometric McKay correspondence.