The McKay correspondence for quotient surface singularities Oswald Riemenschneider, Universität Hamburg

The original McKay correspondence establishes a bijection between the set of conjugacy classes of finite subgroups $\Gamma \subset SL(2, \mathbb{C})$ (that is - by abuse of language - the set of *binary polyhedral groups*) and the set of *Dynkin– diagrams* of type ADE via representation theory of Γ . This correspondence can be interpreted geometrically by

- i) associating to a (finite dimensional complex) representation of Γ geometric objects on the *Klein singularity* $X_{\Gamma} := \mathbb{C}^2/\Gamma$ resp. on its minimal resolution \widetilde{X}_{Γ} , and
- ii) studying their intersection behaviour with the irreducible components of the *exceptional divisor* E_{Γ} .

For general quotient surface singularities X_{Γ} , Γ a finite (small) subgroup of $\operatorname{GL}(2, \mathbb{C})$, the situation is more complicated since there exist always fewer irreducible components of E_{Γ} than nontrivial irreducible representations. Nevertheless, one has a similar McKay correspondence if one considers only the smaller class of *special* representations.

I will discuss these older results together with a recent construction of X_{Γ} in terms of a Γ -invariant *Hilbert scheme* which gives a new understanding of the classical and the generalized geometric McKay correspondence.