The Brezis-Nirenberg problem on the sphere S^3

L.A. Peletier

Leiden University, Leiden, The Netherlands

Abstract

The Brezis-Nirenberg problem in *Euclidian* space \mathbf{R}^N (N > 2) concerns the existence of positive solutions of the Dirichlet problem

$$\begin{cases} -\Delta u = \lambda u + u^{p_N} & \text{in} & \Omega, \\ u = 0 & \text{on} & \partial\Omega, \end{cases}$$

where Ω is a bounded domain and $p_N = (N+2)/(N-2)$ is the critical Sobolev exponent. Such solutions were found to exist if and only if $\lambda \in (\lambda^*, \lambda_1)$, where λ_1 is the principal eigenvalue of the Laplacian with Dirichlet boundary conditions and $\lambda^* = 0$ if $N \ge 4$ and $\lambda^* \in (0, \lambda_1)$ if N = 3.

In this lecture we review recent work on the same problem, but then on the sphere S^3 . In particular, we shall focus on *negative* values of λ . Whereas in Euclidian space there are no positive solutions in this range, on the sphere we find a surprising wealth of positive solutions of which the complexity increases as $\lambda \to -\infty$.