Endomorphisms of Weyl Algebras and the Jacobian Conjecture

Alexei Belov

Hebrew Univesity, Jerusalem

The Jacobian Conjecture (JC_n) asks:

Is any polynomial endomorphism of \mathbb{C}^n , $F: x_i \mapsto F_i(\vec{x})$ with constant Jacobian det $\left(\frac{\partial F_i}{\partial x_j}\right)$ an automorphism?

The Dixmier Conjecture (DC_n) asks:

Is any endomorphism of the Weyl Algebra W_n of differential operators,

$$W_n = \mathbb{C}\left[x_1, \dots, x_n, \frac{\partial}{\partial x_1}, \dots, \frac{\partial}{\partial x_n}\right],$$

an automorphism?

It is well-known that $DC_n \Longrightarrow JC_n$. Ten years ago, it was proved that $JC_2 \Longrightarrow DC_1$. Recently, Kontsevich and I proved that $JC_{2n} \Longrightarrow DC_n$ for all n.

The proof is based on reduction mod p. After this reduction, $W_n \otimes \mathbb{Z}_p$ becomes a finite-dimensional algebra over its center, and any endomorphism of $W_n \otimes \mathbb{Z}_p$ is uniquely defined by its restriction to the center of $W_n \otimes \mathbb{Z}_p$.

This approach is related to Kontsevich's conjecture that $\operatorname{Aut} W_n$ is isomorphic to the group of symplectomorphisms of \mathbb{C}^{2n} . For n > 1, this Kontsevich Conjecture is still open.