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Abstract: In this study we aim to present the successful development of an energy conserving conceptual
stochastic climate model based on the inviscid 2-layer Quasi-Geostrophic (QG) equations. The stochastic
termshave been systematically derived and introduced in such away that the total energy is conserved. In this
proof of concept studywe give particular emphasis to the numerical aspects of energy conservation in a high-
dimensional complex stochastic systemandwe analyzewhat kind of assumptions regarding the noise should
be considered in order to obtain physical meaningful results. Our results show that the stochastic model con-
serves energy to an accuracy of about 0.5% of the total energy; this level of accuracy is not a�ected by the
introduction of the noise, but is mainly due to the level of accuracy of the deterministic discretization of the
QG model. Furthermore, our results demonstrate that spatially correlated noise is necessary for the conser-
vation of energy and the preservation of important statistical properties, while using spatially uncorrelated
noise violates energy conservation and gives unphysical results. A dynamically consistent spatial covariance
structure is determined through Empirical Orthogonal Functions (EOFs). We �nd that only a small number
of EOFs is needed to get good results with respect to energy conservation, autocorrelation functions, PDFs
and eddy length scale when comparing a deterministic control simulation on a 512×512 grid to a stochastic
simulation on a 128 × 128 grid. Our stochastic approach has the potential to seamlessly be implemented in
comprehensive weather and climate prediction models.

Keywords: stochastic parameterization, energy conservation, projection operator, spatial noise structure,
Empirical Orthogonal Functions
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1 Introduction
The dynamics of the atmosphere and the oceans are by nature complex. Processes with di�erent time and
length scales interact with each other a�ecting the system as a whole. While climate and ocean models have
considerably improved over the last few decades, we still cannot resolve all important physical scales and
processes, see for instance [20, 6, 22]. The discretization of the continuous governing equations of motion
is limited by the model resolution, which determines the size of the smallest resolvable scale. Despite the
continued increase of computer power and, thus, of resolution, there are stillmany important processes in the
atmosphere and in the oceans that cannot be explicitly resolved. These include turbulentmotionswith scales
ranging froma few centimeters to the size of themodel grid box, aswell as processes that occur at amolecular
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scale, like condensation and evaporation. Anynumerical forecaster ormodeller has tomake adecision, based
on the targeted objectives, regarding the spatial and temporal scales to resolve. As a consequence of this
decision, each numerical scheme inevitably fails to resolve subgrid-scale processes.

These unresolved processes and scales cause many of the observed di�erences between models and ob-
servations. In order to represent these unresolvedprocesses, so-calledparameterizations are necessarywhich
take into account the in�uence that the unresolved have on the resolved processes, if they would be resolved
in high-resolution simulations [20]. Most parameterizations, however, are damping and do not take account
of the energy andmomentum �uxes from the unresolved to the resolved scales [34, 57]. This is a likely source
of many of the observed biases in climate and oceanmodels. Without the added dissipation, however, energy
and enstrophy would accumulate at the truncation scale and lead to a blow up in �nite time. Hence, it is
of fundamental importance to �nd systematic ways to parameterize the unresolved scales and processes of
models, and to improve the model performance and reduce the model biases at coarser resolutions.

As suggested already in 1976 byHasselmann [31], fastwaves canbe considered as noisewith respect to the
slowly evolving large-scale modes and, therefore, can be parameterized by stochastic processes [23]. Hence,
to ameliorate this problem of too large damping, stochastic parameterization schemes have been developed
(see recent reviews [20, 6, 22, 27]). There are several advantages in using stochastic parameterizations; the
most important are: gain in computational time compared to higher resolved simulations; reduction ofmodel
errors and systematic representation of uncertainties and model errors. Most operational stochastic parame-
terization schemes are rather ad hoc developments [7] and do not conserve energy or momentum. As a con-
sequence, current schemes have the disadvantage of the forfeiture of conservation laws and a likely loss of
important symmetries in the model equations. For climate simulations conservation properties are of impor-
tance because they are leading to stable and realistic climate simulations, and should be considered also for
stochastic parameterizations, not only for stability reasons, but also to respect the underlying dynamics of
geophysical �uid �ows.

From a mathematical perspective, there has been a growing interest over the last few decades in �nding
appropriate techniques to develop systematic methods to accurately and e�ciently represent fast variables
in multi-scale systems. Much fundamental work has already been done, e.g. Mémin [37] derived energy con-
serving geophysical �uid equations assuming that the velocity can be written as a mean state plus some
perturbations, while Holm [32] used stochastic variational principles to obtain new stochastic �uid equa-
tions conserving helicity and the Kelvin circulation theorem. Numerical models following these theoretical
approaches have been developed and show good performance and improved results with respect to the de-
terministic counterpart at the same resolution, see for example [51, 52] for numerical implementations and
results of [37] and [12, 11] for applications of [32].

Furthermore, Majda, Timofeyev and Vanden-Eijnden [43, 42, 44, 39, 38] developed a systematic strategy
for stochastic mode reduction starting from the assumption that the explicit nonlinear self-interaction of the
fastest scales involved can be represented by a linear stochastic operator. This procedure is mathematically
justi�ed only for large time scale separation but showed good performances also in case of a less pronounced
time scale separation. For its application to more complex atmospheric models see also [26, 19, 18, 50, 41].
A less theoretical, but still e�cient, approach is given by the stochastic kinetic energy backscatter scheme
(SKEBS) which is often used to represent model uncertainty arising from unresolved subgrid-scale processes
and their interactions with larger scales [56, 5, 22, 47, 21]. Connected to the idea of backscatter, di�erent de-
terministic and stochastic parameterizations aiming at representing the upscale turbulent cascades in eddy-
permitting simulations have been developed. Among others, noticeable examples are given by [33, 49, 62, 28,
15], which also showed that the stochastic backscatter is, in general, a more e�cient eddy parameterization
than its deterministic counterpart.

In this paper we systematically further develop the projector approach outlined by Frank and Gottwald
[16]. Here the stochastic noise is projected onto the energy manifold. This approach has the main advantage
that it can be straight forwardly implemented in existing models while the above approaches [37, 32, 43] de-
rive new equations of motions which are harder to implement in already existing and operational models.
Frank and Gottwald [16] tested their scheme with a 4-dimensional toy-model for the large-scale dynamics of
the atmosphere by means of a Lagrangian description of the dynamics. Here instead we apply it to a high-
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dimensional conceptual climate model, i.e. the inviscid 2-layer QG model, in a Eulerian framework. The pur-
pose of our study is a proof of concept whether this scheme can also be applied to high-dimensional models.
Thus, themain research questions we aim to address in this study is: (i) Canwe accurately conserve energy in
a high-dimensional QGmodel? and (ii)What conditions dowe need to impose on the spatial noise covariance
matrix for this? Hence, in this work we focus on the technical aspects of this approach, analyzing potential
issues due to the discretization of the continuous equations or to the numerical implementation in general.
With this intention, we choose to apply this projection operator scheme to an energy conserving QGmodel as
a hard numerical test case.While our particular set upmight not seem interesting from a geophysical �uid dy-
namics point of view, we still consider it numerically challenging and hence a valuable benchmark in testing
the numerical aspects and accuracy of our stochastic system in a high-dimensional geophysical model.

The remainder of this paper is organized as follows: in Section 2 we present the inviscid 2-layer energy
conserving QG model both in its deterministic and stochastic formulations. Details on the numerics, like
the choice of the numerical solvers and the de�nition of the spatio-temporal noise structure are provided
in Section 3. Section 4 displays and discusses the outcomes of our stochastic model experiments. Finally in
Section 5, we give a brief summary of our �ndings and outlook of future research directions.

2 The 2-Layer QG Model

2.1 The deterministic equations

As mentioned above, we start from the non-dimensional inviscid 2-layer QG equations presented in [59] on a
β-plane with double-periodic boundary conditions

∂qB
∂t = −J(ψB , qB) − J(ψT , qT) , (1a)

∂qT
∂t = −J(ψT , qB) − J(ψB , qT) , (1b)

qB = ∇2ψB + βy , (2a)
qT = ∇2ψT − k2

dψT , (2b)

where qB = qB(x, t), ψB = ψB(x, t) and qT = qT(x, t), ψT = ψT(x, t) represent, respectively, potential vorticity
(PV) and streamfunction of the barotropic and baroclinic mode on the horizontal plane x ∈ R2 at time t ∈ R,
∇ is the horizontal gradient,∇2 the Laplacian and J the Jacobian operator

J(A, B) = ∂A
∂x

∂B
∂y − ∂A∂y

∂B
∂x .

Since we employ a non-dimensional description, the domain has been rescaled to a 2π × 2π square. Double
periodic QGmodels on a β-plane have been widely used in theoretical studies [8, 9, 29, 45]. Here we consider
layers of equal thickness and the parameter kd (given by the relation k2

d/2 =
(

2f0/Nh
)2 where N = 1.2 · 10−2

is the Brunt-Väisälä frequency, h the mean depth of the layers and f ≈ f0 + βy the approximate Coriolis term
where f0 = 1 and β = 0.509) determines the strength of the shear between the two layers and hence also the
intensity of the baroclinic instability. For most simulations in this study we are using a deformation radius of
about 0.042 non-dimensional units and, thus, are in an ocean like eddy-permitting regime. In this setting,
one non-dimensional time unit corresponds to roughly 2.5 days.

Since we want to focus on the energy conservation properties of our numerical scheme we do not intro-
duce terms accounting for external forcing or eddy dissipation, and instead consider an initial value problem.
We want to stress, that we want to focus in this study on the numerical and accuracy aspects of energy con-
servation in a stochastic setting and not on geophysical �ow realism (see section 2.2 below).
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The system given by equations (1)-(2) conserves its total energy E and enstrophy Z:

E(qB , qT) = 1
2

∫
A

[
(∇ψB)2 + (∇ψT)2 + k2

dψT
2
]
dA , Z(qB , qT) = 1

2

∫
A

(
q2
B + q2

T

)
dA .

Details about conservation properties and how to derive them can be found in [59].
The Hamiltonian H of the system is given by its total energy, thus it reads

H(qB , qT) = 1
2

∫
A

[
(∇ψB)2 + (∇ψT)2 + k2

dψT
2
]
dA . (3)

It can be shown that

δH = +
∫
A

(
∇ψB · δ∇ψB +∇ψT · δ∇ψT + k2

dψT · δψT
)
dA

= −
∫
A

(
ψB · δ∇2ψB + ψT · δ∇2ψT − ψT · k2

dδψT
)
dA

= −
∫
A

(ψB · δqB + ψT · δqT) dA ,

which implies

∂H
∂qB

= −ψB ,
∂H
∂qT

= −ψT .

For a general review of Hamiltonian mechanics and its application to geophysical �uid dynamics see [2] and
[55]. The following notation will be employed

A : B = aijbij = Tr(ABT) .

2.2 The stochastic formulation

In this sectionwederive a stochastic energy conserving versionof the 2-layerQGequations. In our formulation
we include unresolved fast sub-grid processes by means of a stochastic forcing, modeled as an Ornstein-
Uhlenbeck process, which we assume to act �rst on the baroclinic mode and then, because of the coupling
between the two modes, to a�ect also the slower barotropic mode. For this choice we relate to the idea of
backscatter, where energy goes from the smaller scales back into the larger processes. Therefore, we add a
simple 2-dimensional stochastic �eld only to the fast baroclinic mode. The source terms so introduced would
lead the dynamics to leave the manifold of constant energy on which the deterministic model (1)-(2) evolves.
In order to balance the stochastic �uctuations that would a�ect the aforementioned manifold, we introduce
an auxiliary 2-dimensional stochastic process dYt. This procedure follows the method introduced by Frank
andGottwald in [16],with thedi�erence thatwe consider ahigh-dimensional system in aEulerian framework,
and not a 4-dimensional system with a Lagrangian description. The following set of equations is therefore
proposed:

dqB =
(
−J(ψB , qB) − J(ψT , qT)

)
dt , (4a)

dqT =
(
−J(ψT , qB) − J(ψB , qT)

)
dt − ΓqTdt + ΣdWt + dYt , (4b)

dYt = StdWt + Btdt , (4c)

where dWt denotes a 2-dimensional Wiener process, Γ, Σ, St ∈ R2×2 and Bt ∈ R2. The choice of adding the
stochastic terms on the equation of the baroclinic PV not only reconnects to the concept of backscatter, but
allows potentially also the application of stochastic mode reduction, as Frank and Gottwald did in their work
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[16]. For instance, one could derive a reduced order stochastic model for just the barotropic modes [43, 42,
44, 19, 18].

Instead of dealing with two di�erent stochastic processes, we want to write St and Bt as functions of Σ
and Γ. For that purpose, we write the increment of H as a sum of two parts, a deterministic part µH including
all the terms multiplied by dt, and a stochastic part σH containing those with the Wiener process. By Ito’s
theorem we have

dH = ∂H
∂qB

· dqB + ∂H
∂qT

· dqT + 1
2

∂2H
∂qT∂qT

: dqTdqTT

= − ψB ·
(
−J(ψB , qB) − J(ψT , qT)

)
dt

− ψT ·
(
−J(ψB , qT) − J(ψT , qB) + Bt

)
dt

+
(

1
2

∂2H
∂qT∂qT

: (Σ + St)(Σ + St)T
)
dt

− ψT · (−ΓqT) dt − ψT · (Σ + St) dW
= µHdt + σHdWt ,

where the transposed is denoted by the superscript T , and

µH = ψB ·
(
J(ψB , qB) + J(ψT , qT)

)
+ ψT ·

(
J(ψT , qB) + J(ψB , qT) − Bt

)
+ ψT · ΓqT + 1

2
∂2H

∂qT∂qT
: (Σ + St)(Σ + St)T

= −∇qBH ·
(
J(ψB , qB) + J(ψT , qT)

)
−∇qTH ·

(
J(ψT , qB) + J(ψB , qT)

)
+∇qTH · Bt −∇qTH · ΓqT + 1

2
∂2H

∂qT∂qT
: (Σ + St)(Σ + St)T

(5)

σH = − ψT · (Σ + St)
= ∇qTH · (Σ + St) .

Sincewewant to conserve the total energy, dH has to be zero. Thereforewe impose both µH and σH to be zero.
Following the reasoning outlined in [16], the auxiliary stochastic process dYt shouldnot perturb thedynamics
on the tangent space and should be constructed only to counterbalance those components of the OU process
which are orthogonal to themanifold of constant energy, thuswe de�ne a projection operatorP ∈ R2×2. Since
theWiener process a�ects only the evolution equation of the baroclinic PV, it will be su�cient to project with
respect to the manifold of constant baroclinic energy:

P = I − 1
|∇qTH|2

∇qTH(∇qTH)T

= I − 1
|ψT |2

ψTψTT ,

where I ∈ R2×2 stands for the identity matrix. Since P (∇qTH) = 0, P projects onto the tangent space of the
baroclinic kinetic energy surface. Consequently, we want St and Bt to satisfy

PSt = 0 , PBt = 0 . (6)

From the assignment σH = 0 we can easily determine St. In fact, since ∇qTH is in the kernel of P, imposing
σH = 0 is equivalent to requiring Σ + St = P(Σ + St). Thus, using Eq. (6), we obtain

St = − (I − P) Σ . (7)
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Substituting Eq. (7) into Eq. (5) and considering only the terms arising from the inclusion of the stochastic
processes into the deterministic set of equations (since the deterministic model conserves energy, the other
terms do not contribute to the variation of total energy), we can determine Bt from the requirement µH = 0:

Bt = (I − P) ΓqT + 1
2 |ψT |2

(
∂2H

∂qT∂qT
: PΣΣTP

)
ψT . (8)

Placing Eq. (7) and Eq. (8) into Eq. (4), after some manipulations, we get the following set of equations

dqB =
(
−J(ψB , qB) − J(ψT , qT)

)
dt , (9a)

dqT =
(
−J(ψT , qB) − J(ψB , qT)

)
dt + PΣdWt

−
(
PΓqT −

1
2 |ψT |2

(
∂2H

∂qT∂qT
: PΣΣTP

)
ψT
)
dt . (9b)

Equations (2)-(9) constitute our stochastic energy conserving 2-layerQG system.Adetailed derivation of equa-
tions (8) and (9) is reported in Appendix A. As can be seen, the resulting set of equations contains multiplica-
tive noise and nonlinear damping, due to the speci�c de�nition of the projection operator. Themultiplicative
noise is in fact a correlated additive multiplicative (CAM) noise [38, 53, 17].

3 Numerical implementation
Since we aim to analyze possible applications of this approach to climate and ocean models, which are typ-
ically formulated in terms of �nite volumes or �nite di�erences, we discretize equations (2)-(9) in terms of
�nite di�erences in the framework of a grid-point based code. Our discretization of the QG model is based
on the energy and enstrophy conserving discretization scheme by Arakawa [1]. This scheme ensures that en-
ergy and enstrophy are conserved for all truncations. Especially this scheme does not require any numerical
di�usion or dissipation for numerical stability. This property a�ects the energy and enstrophy cascades by au-
tomatically redistributing the energy and enstrophy at the truncation scales, making the model simulations
unrealistic. However, using this discretization scheme will allow us to focus on the accuracy of the energy
conservation of our stochastic approach.

For the time stepping we employ explicit Runge-Kutta (RK) methods (whose order will be a matter of dis-
cussion in the following section), and we use a Fast Fourier Transform (FFT) to invert the Laplacian operator
and obtain the streamfunctions from the corresponding PV. Since FFT is an exact numerical method and the
Arakawa scheme is designed to conserve energy and enstrophy for any truncation, the only spurious e�ect
on the energy due to the numerics is given by the RK method, which is known to be to a small extent dissi-
pative in time. When dealing with the stochastic terms, we integrate them using either the Euler-Maruyama
or Milstein schemes [48]. Finally, the initial distributions of the barotropic and baroclinic streamfunctions
are generated using a pseudo-random number generator, i.e. no a-priori structure is given as input, and we
de�ne the corresponding PV by equations (2). We do not change the seed when de�ning the initial condition,
thus all simulations at resolution 128 × 128 start from the same initial condition. Once the initial condition
is de�ned, we set a new seed for the noise generator. Even though we do not have any forcing the model does
not settle into a barotropic regime; the baroclinic modes are still active with active barotropic and baroclinic
mode interactions (not shown). Furthermore, the probability density functions of the barotropic-baroclinic
energy transfer terms are symmetric (not shown), suggesting an active interaction between barotropic and
baroclinic modes.
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3.1 Deterministic model

Beforemoving to the stochastic set of equations and related results, we test di�erent orders of accuracy of our
numerical scheme in the implementation of the deterministic 2-layer QGmodel (equations (1)-(2)) in order to
�nd the optimal balance between accuracy and computational time.

In our code, we solve the above evolution equations (1) for the PVs and then we compute the correspond-
ing streamfunctions through equations (2). We use explicit Runge-Kutta 2nd and 4th order methods for the
time integration, Arakawa 2nd and 4th order discretizations of the Jacobian [1] and a Fast Fourier Transform
to invert the Laplacian operator. While performing our tests, we also consider di�erent values of the mean
depth of the �uid h; in particular we consider the cases h = 1, 10, 100. These tests are performed over a
128 × 128 spatial grid with a time step of ∆t = 10−3.

We do not report here all the statistics and energy graphs obtained with the di�erent combinations of
solvers, but show only those motivating our choice to employ RK4 and Arakawa 4th order in the following.
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(a) h = 100; RK2 & Arakawa 2nd order.
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(b) h = 100; RK2 & Arakawa 4th order.
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(c) h = 100; RK4 & Arakawa 4th order.

Figure 1: ACF for the case with h = 100 and di�erent combinations of deterministic numerical solvers. By using the second
order method both for RK and Arakawa schemes, the baroclinic mode and the barotropic PV decorrelate more slowly.
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(c) h = 1; RK4 & Arakawa 4th order.

Figure 2: Total energy graphs with h = 1 and di�erent combinations of deterministic numerical solvers. It can be seen that also
after the initial spin up period, which has been here neglected, energy increases in time when solving with RK2 and 4th order
Arakawa.

Figure 1 shows that the lower order combination of RK2 with Arakawa 2nd order does not reproduce accu-
rately the autocorrelation function (ACF) in the case h = 100 and that just increasing the order of Arakawa’s
discretization is enough to capture correctly the ACF. However, when combinedwith RK2 it does not conserve
energy in the case h = 1 also after the initial spin up period (Fig. 2, where the spin up period has been ne-
glected). More generally, we found that RK4 with Arakawa 4th order is more reliable and that the scenario
with h = 10 has a less discernible spin up period and it is the best reproduced case study with all the con-
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sidered solvers, therefore we decided to employ this higher order numerical implementation and we �xed
h = 10. As a consequence of this choice, the Rossby deformation radius 1/kd is approximately 0.042 and
we are in a ocean-like regime with small eddies. Furthermore, while the energy �uctuates around a mean
value the �uctuations are relatively small; the energy �uctuation amplitude is less than 1% of the total en-
ergy. With the chosen numerical solvers also enstrophy is conserved by the system to a similar accuracy, as
in the continuous scenario (not shown).

3.2 Stochastic equations

As in the deterministic case, we �rst solve the stochastic evolution equations (9) for the PVs and then we get
the corresponding streamfunctions through equations (2). As a consequence of the analyses in the previous
paragraph, we use an explicit RK 4th order method for the time integration, Arakawa 4th order discretization
of the Jacobian [1] and FFT to invert the Laplacian operator. The stochastic terms are integrated using either
the Euler-Maruyama or Milstein schemes [48]. Later we will analyze di�erences in the outcomes due to the
stochastic solver. In the stochastic simulations we employ a 128 × 128 spatial grid with a time step of size
∆t = 10−3. As a consequence ∆x ≈ 0.049 and the model is in the eddy permitting regime.

As we will demonstrate below, for the dynamical consistency between deterministic and stochastic mod-
els it is crucial to consider spatially correlated noise. To demonstrate this, we consider two scenarios: in the
�rst we assume that the noise on each grid point behaves as independent and identically distributed (iid)
random variables, while in the second we allow for correlation between di�erent grid points. In the follow-
ing subsection a more detailed description of how the correlation matrix of the noise is constructed can be
found. Finally, in order to generate the noise, we �rst produce uniformly distributed random numbers using
the Mersenne-Twister algorithm [46], and then we reshape them through the Box-Muller procedure in such
a fashion that they are sampled from a Gaussian distribution with the desired mean and variance, which in
our case is N

(
µ = 0, σ2 = ∆t

)
. We compare the outcomes with a reference solution given by a deterministic

simulation with 512×512 grid points and ∆t = 10−4. For a fair comparison, we project the �ne grid data onto
a grid with the same resolution as for the stochastic simulations.

3.3 Spatial noise structure

For allowing spatial correlations amongdi�erent grid points, we need to determine the elements of thematrix
Σ. We do this using eigenvectors obtained from a dimension reduction technique. Here we employ Empiri-
cal Orthogonal Functions (EOFs) [58]. We derive the EOFs from the high-dimensional deterministic control
simulation.

Once the eigenvectors and the corresponding eigenvalues are computed, we select a number of EOFs and
de�ne Σ as a convex combination of the chosen eigenvectors Ei. Such technique has been applied already
in [25, 24]. A more general linear combination could be used and it would be easy to modify this constraint
in order to attribute a stronger (or weaker) amplitude to the noise. The weights ωi are selected as uniformly
distributed random numbers, i.e.,

Σ =
∑
i
ωiEi ,

∑
i
ωi = 1 , ωi ∼ U{0, 1} ,

where the eigenvectors are matrices with dimensions equal to the grid size. Coe�cients related to the redun-
dant eigenvectors are set to be zero. In view of the fact that the noise is only in the equation of the baroclinic
mode, we use ψT -EOFs computed with respect to the L2 norm using the data of the high resolution run pro-
jected onto the coarser grid. Considering that the weights ωi are chosen randomly in each simulation, no
particular direction is preferred with respect to the others reducing possible biases in the results due to how
the EOFs have been computed.
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4 Results of the stochastic simulations

4.1 Space-time independent noise

For reasons that will become evident later, in this scenario we perform the stochastic integration only with
the Euler-Maruyama scheme. As assessment criteria, we �rst look at the conservation of energy and then at
other statistical properties like the autocorrelation function (ACF) and probability density function (PDF).
Here we consider iid white noise with zero mean and variance equal to the time step. Therefore, the matrices
Σ and Γ can be written as

Σ = σI , Γ = γI

where I ∈ R2×2 stands for the identity matrix and σ, γ ∈ R. We show the results for the case σ = 1 and γ = 1.

4.1.1 Numerical results

In this case, after a positive jump at the beginning of the simulation (because of the forcing, the systemmoves
to the closest stable state, which has a di�erent amount of total energy), energy is conserved (see Figure 3a)
with very small �uctuations in time (see Figure 3b). In fact, when compared to a deterministic run at the
same resolution (see Figure 3c), quite unexpectedly, variations in the total energy graph are smaller in the
stochastic simulation. Still, looking at Figure 3b, it is possible to notice a small decreasing trend suggesting
that the parameterization is damping in the long run which is likely due to the Runge-Kutta scheme, which
is known to be damping for.
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(a) Total energy of the system.
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(b) Total energy anomalies of the system.
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(c) Total energy anomalies of a low reso-
lution deterministic run.

Figure 3: Total energy graph for the 2-layer stochastic QG model, with iid white noise and σ = 1 , γ = 1. After an initial positive
jump, energy is conserved. Graph (c) shows the total energy anomalies of a deterministic run at the same resolution. It can be
noticed that, surprisingly enough, oscillations are smaller in the case of the stochastic system.

A less reassuring result is given by the contour plot of the baroclinic mode. In Figure 4 we show the baro-
clinic streamfunction (but a very similar result can be observed also for the baroclinic PV) at time t = 200
(left) and the plot of the same �eld at the same time given by our reference solution (right). What immediately
stands out is the di�erent pattern presented by the two �gures. Furthermore, at a closer look it can also be
noticed that the di�erent colors in Figure 4a represent di�erences in the order of 10−4 and they become even
smallerwhen looking at the contour plot for later times (not shown),meaning that the �eld ismoving towards
a constant state in space. This explains the smaller amplitude of the �uctuations in the energy graph with
respect to the deterministic scenario, and it is re�ected also in the ACF and in the PDF (see Figures 5-6). The
former displays longer decorrelation times in general and, more speci�cally, the baroclinic streamfunction
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(a) Baroclinic streamfunction. (b) Baroclinic streamfunction: reference solution.

Figure 4: Contour plot for the baroclinic streamfunction given by the stochastic system with iid white noise, σ = 1 , γ = 1 (left)
and by the high resolution deterministic simulation (right). The reader will immediately notice the di�erent patterns displayed
by the two pictures and, at a closer look, that the colors in the left graph represent di�erences in the order of 10−4, which get
even smaller with the developing of the simulation, implying that the �eld is moving towards a constant state in space.

seems to require a longer decorrelation time with respect to the barotropic streamfunction which is in con-
trast with the physics. The latter instead shows no Gaussian distribution for the baroclinic mode and smaller
variance for the barotropic mode.
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(a) Auto-correlation functions.
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(b) Auto-correlation functions: reference solution.

Figure 5: ACF resulting from the stochastic system with iid white noise, σ = 1 , γ = 1 (left) and from the high resolution de-
terministic simulation (right). The stochastic simulation does not well reproduce the ACF of the reference solution but displays
longer decorrelation times.

In their paper [16] Frank and Gottwald used iid noise obtaining conservation of energy and physically
reasonable outcomes. As already stated earlier, they employ a Lagrangian discretization of the system, while
we consider the dynamics from a Eulerian point of view. Since Lagrangian descriptions of motion follow the
trajectories of the single particles, and not the �uid as a whole in a �xed domain, in this frame the main pur-
pose of thenoise is simply to perturb the trajectorywhile remaining on themanifold of constant energy.Hence
any spatial information added to the noise is not strictly necessary. On the other hand, Eulerian descriptions
focus on what happens inside a well-de�ned domain and do not care about the behavior of the single par-
ticles. Thus in this framework spatial iid noise means that each grid point does not feel the in�uence of its



Energy Conserving Stochastic Climate Model | 55

-50 0 50
0

0.05

0.1
q

B

-0.05 0 0.05
0

20

40

60

B

-22.2 -22.1 -22
0

20

40

60
q

T

0.0397 0.0398 0.0399
0

2

4

6
10 4 T

(a) Probability density functions.
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(b) Probability density functions: reference solution.

Figure 6: PDF rising from the stochastic system with iid white noise, σ = 1 , γ = 1 (left) and from the high resolution determin-
istic simulation (right). The baroclinic mode of the stochastic set of equations does not have a Gaussian distribution. Moreover
the barotropic mode displays less variance.

neighbors, hence the noise would represent phenomena which fully evolve and decorrelate inside the cell;
the gap between the large resolved scales and such small phenomena is too big to be correctly resolved by the
numerics. Therefore it appears crucial to de�ne a spatial structure of the noise in order to characterize how
the noise should behave inside the domain and interact with the deterministic dynamics. The next section
discusses in more detail our results.

4.2 Space-time correlated noise

To ease computations, we neglected the Γ term in equation 9b, i.e. Γ = 0. For both the Euler-Maruyama and
Milstein schemes, we run an ensemble of 40 simulations using a convex combination of the �rst two EOFs to
build the covariancematrix Σ.We tried also combinationswith a di�erent number of EOFs.When considering
up to the �rst 10 EOFs, similar results to those we report here are obtained. With 20 or more EOFs we noted
slightly worse performances of the scheme. Because of the constraint

∑
i ωi = 1, when considering relatively

many EOFs, each of them has a small amplitude and then the patterns contrast with each other resulting in a
not well-de�ned structure. On the other hand, a combination of a smaller number of EOFs can still maintain
the individual patterns while allowing interaction with each other. In what follows, we opted for using only
the �rst two main patterns.

As evaluation criteria, we employ the same analyses as before. Regarding the PDF, we also compute the
�rst and second moments of the centers in order to investigate the ensemble variance. In addition we com-
pare to the reference solution: the total variance and eddy length (computed through space correlations as
presented in [3]).

4.2.1 Energy conservation

In each simulation the total energy �uctuates in time around a constant value. Di�erently from the previous
case, there is no jump to a di�erent stable state at the beginning of the time integration, meaning that our
stochastic system keeps its evolution on the manifold de�ned by the initial condition. In both ensembles, if
we compare the amplitude of the anomalies AAnom with respect to the mean value of the energy µEn, we see
that AAnom is, for most of the running time, around 0.5 % of µEn with spikes no greater than 0.7 %.Wewould
like to point out that, even though for each individual simulation the evolution of the �eld variables is dif-
ferent (and this is shown by the fact that the PDFs of each individual run are centered in di�erent locations),
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the total energy of the system is almost the same at each time step, with di�erences in the order of 10−6, for
each ensemble member. This implies that, starting from the same initial condition the model is exploring
di�erent possible con�gurations available with the de�ned amount of total energy. In Figure 7 we show the
time-evolution of the energy anomalies for an individual Euler-Maruyama (Milstein) ensemble member to-
gether with the total energy anomalies graph of a deterministic simulation at the same resolution. It can be
seen that �uctuations are roughly of the same amplitude for both the deterministic and the stochastic system.
Thus, the energy �uctuations are mainly a result of the deterministic numerical scheme and not of the used
stochastic scheme. This shows that the projection operator works very well in high-dimensional models and
suggests that one should improve the discretization of the deterministic part in order to ameliorate energy
conservation of the stochastic system.
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(a) Euler-Maruyama.
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(b)Milstein.
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(c) Deterministic run.

Figure 7: Total energy anomalies, displayed as a percentage of the mean total energy value, of an individual member of the
Euler-Maruyama (Milstein) ensemble. On the right we also show the total energy anomalies graph for a deterministic run at the
same resolution. The reader can notice that the fluctuations have roughly the same amplitude.

4.2.2 ACF

Every ensemble member shows roughly the same ACF pattern, independent of the stochastic solver. Di�er-
ently from the previous case with iid white noise, in both ensembles we obtain decorrelation times very close
to the reference. The barotropic streamfunction displays a longer decorrelation time with respect to the baro-
clinic streamfunction, suggesting that in future work a stochastic mode reduction might be performed for
eliminating the baroclinic modes and having a stochastic barotropic model as in [43, 42, 44, 19, 18]. In Figure
8 we show the ACF for one stochastic simulation of the Euler-Maruyama (Milstein) ensemble together with
the reference solution.

4.2.3 PDF

In contrast to the case with iid noise, in each run of both ensembles we recover the Gaussian behavior of the
baroclinicmode displayed by the reference solution andmore variance for the barotropic, see Figure 9 for the
PDF graph of an individual Euler-Maruyama (Milstein) ensemble member and the reference solution. On the
other hand, the PDF of an individual stochastic run shows less variance with respect to the reference solution
except for the barotropic streamfunctionwhich, in the comparison, showsmore (this can be noticed in Figure
9). Hence we decided to investigate the variance of the ensemble by looking at the �rst and second moment
of the center of the PDFs of the ensemble members. While we are not too much interested in the exact value
taken by the �rstmoment, due to the chaotic nature of the system,wewould like to point out that, theMilstein
ensemble displays more variance with respect to the Euler-Maruyama scheme. In Table 1 we report the 95%
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(a) Euler-Maruyama.
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(b) Milstein.
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(c) Reference solution.

Figure 8: ACF of a particular Euler-Maruyama (Milstein) ensemble member and reference solution. Both ensembles well catch
and reproduce the ACF shown by the high resolution deterministic simulation.

con�dence interval (CI) of the centers of the PDFs; those related to the Milstein scheme span a wider range
of values. We would like to remind the reader that the Euler-Maruyama and Milstein schemes have the same
order of weak convergence (i.e. it is 1 for both schemes), but di�erent order of strong convergence (0.5 for
Euler-Maruyama and 1 for Milstein). Hence, since we are considering long time simulations, statistical prop-
erties of the �eld variables are more sensitive to weak convergence, while the evolution of trajectory paths is
more sensitive to strong convergence. This explains why both ensembles catch the right shape of the PDF but
at the same time the Milstein ensemble displays more variance. It could be argued that 0.5 might not be a
meaningful di�erence; on the other side, high order stochastic integrationmethods include complicated cor-
recting termswhichmight be hard to implement, see for instance [54] for an example of necessary conditions
that have to be satis�ed by a class of stochastic integration methods with (strong) order 1.5. Hence here we
tried to analyze two of the most likely employed methods in complex climate models. We also checked the
total variance of the stochastic ensemble and compared to a deterministic run at the same resolution and to
the high resolution deterministic simulation. Unfortunately our stochastic parameterization is still not able
to mend for the variance lost with the coarsening of the grid (see Table 1).
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(a) Euler-Maruyama.
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(b) Milstein.
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(c) Reference solution.

Figure 9: PDF of an individual member of Euler-Maruyama (Milstein) ensemble and reference solution. The careful reader might
notice that an individual ensemble run displays less variance with respect to reference for almost all �eld variables, inducing
us to investigate the ensemble variance (see Table 1).
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4.2.4 Eddy length

When looking at the contour plots for the baroclinic (but also the barotropic) mode, we can see that in this
scenario the stochastic simulations reproduce a similar pattern as for the case of the reference solution (see
Figure 10 for a representation of the barotropic and baroclinic streamfunctions in the di�erent setups). In
order to have a more objective comparison criterion, we computed the eddy length for the two streamfunc-
tions as a measure of the correlation among di�erent grid points at a �xed time and looked at the e-folding
scale; see for instance [3] for a more detailed description. In Table 1 we report the outcomes for the reference
solution, a coarse deterministic simulation, Euler-Maruyama and Milstein ensemble. When considering the
baroclinic mode, our stochastic parameterization does not improve the eddy length. In both ensembles it is
about half of the baroclinic eddy length displayed by the high resolution simulation, remaining close to the
outcome of a coarse deterministic run (see Table 1). A di�erent conclusion is valid for the barotropic mode.
In fact, in the case of the low resolution deterministic run we get an eddy length of circa 0.524 both in zonal
and meridional direction, while in the stochastic Euler-Maruyama (Milstein) ensemble it can vary between
≈ 0.511 (≈ 0.510) and ≈ 0.570 (≈ 0.560). Comparing these results with the reference solution, we can notice
that we still did not manage to reproduce the high resolution eddy length (≈ 0.714 − 0.716) but we obtained
an improvement of circa 9% with respect to the low resolution deterministic simulation (see Table 1). This
result suggests that the perturbation induced by the noise is still not strong enough, but we are heading in the
right direction. Furthermore, as has already been shown in [60] and references therein, the error dynamics
considerably depends on the speci�c scale at which it is introduced, with a faster growth when located at
small spatial scales. Here the noise structure is built with the �rst two EOFs, hence it can be regarded as a
perturbation on the large spatial scales, which is in good agreement with the improved eddy length for the
slowermode. Nevertheless, as stated in [58], if the �rst EOF can be associatedwith a de�nite physical process,
this is more di�cult already with the second (and even harder for higher-order) EOF because of the orthog-
onality constraint. On the other hand, real-world processes might not have orthogonal patterns. In fact, the
patterns that most e�ciently represent variance do not necessarily have anything to do with the underlying
dynamical structure.

5 Conclusions and perspectives
We described the numerical implementation and evaluation of an energy conserving high-dimensional
stochastic conceptual climate model. Our main focus here is the proof of concept whether the projection
operator approach [16] can be applied to high-dimensional complex geophysical �ow systems in a Eulerian
setting ([16] developed this approach in a Lagrangian setting for a low-order model). Furthermore we inves-
tigate which assumptions regarding the noise should be considered in order to obtain not only energy con-
servation but also dynamically consistent results. For this purpose we used our QG model without forcing,
dissipation and hyperdi�usion. Even though, the resulting circulations are less realistic when comparedwith
the atmosphere and the oceans, this setup provides an ideal test bed for the numerical evalution of energy
conservation of our numerical scheme.

In their paper, Frank and Gottwald [16] derived an energy conserving stochastic formulation for a 4-
dimensional multi-scale toy model of the atmosphere. In order to preserve the conservation of energy they
projected the noise with respect to the manifold of constant energy in such a fashion that those components
of the noise, which would lead the trajectory to leave this manifold, are eliminated. In this paper we brought
forward this approach and applied it to the high-dimensional 2-layer QG model through its Hamiltonian for-
mulation. With the idea of analyzing the applicability of this procedure, not just to simple models but to a
wider range of models with di�erent degrees of complexity, we discretized the evolving equations in a Eule-
rian framework by means of �nite di�erences, i.e. in a similar setup as most climate and ocean models. We
could also introduce a time-scale separation parameter ε, depending on the di�erent time scales of barotropic
and baroclinic modes, to account for the time scale separation between the twomodes. Even though here we



Energy Conserving Stochastic Climate Model | 59

(a) Barotropic streamfunction: Euler-
Maruyama.

(b) Barotropic streamfunction: Milstein. (c) Barotropic streamfunction: reference
solution.

(d) Baroclinic streamfunction: Euler-
Maruyama.

(e) Baroclinic streamfunction: Milstein. (f) Baroclinic streamfunction: reference
solution.

Figure 10: Contour plot for the barotropic (top) and baroclinic (bottom) streamfunctions for an individual member of Euler-
Maruyama (Milstein) ensemble and for the reference simulation. The patterns are similar, even though the stochastic simu-
lations still do not have the same eddy length as the high resolution deterministic run (see Table 1).

focused on other issues and did not consider any time scale separation in our numerical simulations, stochas-
tic mode reduction is a possible research direction to be followed.

In particular, we investigated the delicate step from a continuous to a discrete formulation and found
that the numerics can be sensitive to the mean depth of the �uid, and hence chose solvers that reproduce
correctly the properties of the system, e.g. conservation of energy, in the most general scenario. Once this as-
pect had been settled, we analyzed the e�ects on the system dynamics and statistics due to the introduction
of the stochastic process. Mainly we compared the results for two di�erent scenarios: in the �rst, the noise
of each grid point behaves like an iid random variable while, in the second, we considered spatio-temporal
correlations. We found that employing iid noise leads to either that energy is not conserved or to unphysi-
cal results and hence de�ning a spatio-temporal structure is important to respect the underlying dynamics
of geophysical �ows and for the conservation of energy and the preservation of important statistical prop-
erties, e.g. PDF. This is due to the Eulerian nature of our implementation. Frank and Gottwald employed a
Lagrangian description which follows the trajectories of the single elements. Hence in their model the noise
had the unique purpose of perturbing the trajectories while remaining on the manifold of constant energy.
On the other hand, a Eulerian point of view looks at awell-de�ned domain and considers the �uid as awhole.
Therefore in this frame the noise should perturb the dynamics while conserving energy and preserving the
main properties of the �uid.

In the present work a convex combination of the �rst two EOFs, computed on the data of a high resolution
deterministic run, have been used to de�ne the spatio-temporal correlations consistent with the behavior of
the deterministic system; other dimension reduction techniques, such as [4, 10, 14], could be used too. We
did not recover the same amount of variance as in the high resolution simulation, but the eddy length in
the barotropic mode is improved. This suggests that the stochastic perturbations are not strong or spatially
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Table 1: Summary of some of the previously discussed analyses in the cases of, from left to right: the reference solution, a de-
terministic run at the coarse resolution, Euler-Maruyama and Milstein ensembles. In particular we report: location of the center
of the PDF and, in case of the ensembles, its 95% CI, total variance and eddy length (the latter computed only for barotropic
and baroclinic streamfunctions).

Field variable 512 × 512 det. 128 × 128 det. Euler-Maruyama Milstein
Mean
ψB −3.5687 · 10−3 −2.4223 · 10−3 −6.3485 · 10−4 −4.4880 · 10−4

ψT 2.6234 · 10−2 1.987 · 10−2 2.5108 · 10−2 2.4466 · 10−2

qB 1.0412 −5.1523 1.1737 −0.2762
qT −14.6414 −32.4428 −14.9759 −12.0254

95% CI
ψB [−0.0078, 0.0066] [−0.0070, 0.0061]
ψT [0.0212, 0.0290] [0.0199, 0.0291]
qB [−9.5180, 11.8654] [−13.8563, 13.3039]
qT [−28.8209, −1.1308] [−28.0849, 4.0342]

Total variance
ψB 2.6302 · 10−4 3.5852 · 10−4 3.6169 · 10−4 3.6100 · 10−4

ψT 1.6564 · 10−4 1.0931 · 10−4 1.0931 · 10−4 1.0931 · 10−4

qB 1698.6409 830.2853 829.9909 829.9071
qT 1796.2310 1066.7904 1067.1422 1067.1993

Eddy length
ψB zonal 7.1428 · 10−1 5.2422 · 10−1 [0.51124, 0.56958] [0.50976, 0.56011]
ψB merid. 7.1632 · 10−1 5.2406 · 10−1 [0.51151, 0.56854] [0.50994, 0.56006]
ψT zonal 1.4918 · 10−1 7.4597 · 10−2 [0.07452, 0.07459] [0.07451, 0.07459]
ψT merid. 1.4918 · 10−1 7.4577 · 10−2 [0.07451, 0.07460] [0.07451, 0.07460]

coherent enough. Another possible explanation is the lack of temporal memory in our scheme [27]. Memory
terms have been included inmany techniques, such asmulti-level regressionmodels [36, 35, 40, 30], showing
encouraging results. However they might be rather complicated to implement and might lead to unstable
and diverging simulations as reported in [13] in the case of the Wouters and Lucarini parameterization [61].
Investigating the impact of spatial coherence and memory in the noise will be part of our future research.

Two basic arguments are that the constraint
∑

i ωi = 1 for the noise amplitude was arbitrary and it could
be changed in order to attribute a stronger (or weaker) amplitude to the noise; moreover we computed the
EOFs with respect to the Euclidian norm and not to the total energy norm. A more philosophical discussion
regards instead the usage of the EOF technique itself. In fact it is sensible that using the �rst two EOFs im-
proves the dynamics of the large scales since the �rst EOFs can be easily associated to large scale dynamics.
Going down the ladder, because of the orthogonality constraint, it becomes harder and harder to associate
EOFs to well-de�ned physical phenomena and hence also to the smaller scales [58]. As has already been
shown in [60] and references therein, the error dynamics is considerably dependent on the speci�c scale
at which it is introduced, with a faster growth when located at small spatial scales. In spectral models this
obstacle is easily resolved, since the wavenumber where the noise should be introduced (choosing therefore
its spectral properties) can be selected directly. In a grid-point framework this is not the case. Further studies
in this direction will be done in order to gain this ability also when using a grid-point discretization since
most climate and ocean models are based on this type of numerics and will be reported elsewhere.
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A Derivation of the stochastic 2-layer QG model
We report here a more detailed description of the procedure to derive equations (8) and (9) starting from the
system (4), and making use of (7) and of the energy conservation property of the deterministic system (1)-(2).

As alreadymentioned, once (7) is obtained we substitute it into Eq. (5). Nowwe notice that the increment
of total energy of the system (1)-(2) is

dHdet = ∂H
∂qB

· dqB + ∂H
∂qT

· dqT

= − ψB ·
(
−J(ψB , qB) − J(ψT , qT)

)
− ψT ·

(
−J(ψT , qB) − J(ψB , qT)

)
= 0 ,

due to energy conservation of the deterministic equations. Hence we need to consider only the remaining
terms arising from the inclusion of the stochastic processes in the deterministic equations; we impose them
to equal zero. Computations proceed as follows

−ψT · Bt + ψT · ΓqT + 1
2

∂2H
∂qT∂qT

: (Σ + St)(Σ + St)T = 0

−ψT · Bt + ψT · ΓqT + 1
2

∂2H
∂qT∂qT

: (Σ − Σ + PΣ)(Σ − Σ + PΣ)T = 0

−ψT · Bt + ψT · ΓqT + 1
2

∂2H
∂qT∂qT

: PΣΣTP = 0

−ψTTBt + ψTTΓqT + 1
2

∂2H
∂qT∂qT

: PΣΣTP = 0 .

At this stage we multiply from the left by 1
|ψT |2 ψT obtaining

− 1
|ψT |2

ψTψTTBt + 1
|ψT |2

ψTψTTΓqT + 1
|ψT |2

ψT
(

1
2

∂2H
∂qT∂qT

: PΣΣTP
)

= 0 .

Here we note that 1
|ψT |2 ψTψTT = I − P and that the term ∂2H

∂qT∂qT : PΣΣTP is a scalar. Hence we can rewrite the
previous equation as

−(I − P)Bt + (I − P)ΓqT + 1
|ψT |2

(
1
2

∂2H
∂qT∂qT

: PΣΣTP
)
ψT = 0 .

Now, making use of properties (6) and solving for Bt we recover

Bt = (I − P) ΓqT + 1
2 |ψT |2

(
∂2H

∂qT∂qT
: PΣΣTP

)
ψT ,
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which is Eq. (8). Once relations (7)-(8) have been derived, we can include Eq. (4c) in the evolution equation
of the baroclinic PV (4b) and drop it, since drift and di�usion of the process dY can now be written as a
function of Σ and Γ. Then, replacing S and B with the corresponding expressions as functions of Σ and Γ,
manipulations of Eq. (4b) proceed as follows:

dqT =
(
−J(ψT , qB) − J(ψB , qT)

)
dt − ΓqTdt + ΣdW + StdW + Btdt

=
(
−J(ψT , qB) − J(ψB , qT)

)
dt − ΓqTdt + ΣdW − (I − P) ΣdW

+
(

(I − P) ΓqT + 1
2|ψT |2

(
∂2H

∂qT∂qT
: PΣΣTP

)
ψT
)
dt

=
(
−J(ψT , qB) − J(ψB , qT)

)
dt − ΓqTdt + ΣdW − ΣdW + PΣdW

+ ΓqTdt − PΓqTdt + 1
2|ψT |2

(
∂2H

∂qT∂qT
: PΣΣTP

)
ψTdt

= −
(
J(ψT , qB) + J(ψB , qT)

)
dt + PΣdWt

−
(
PΓqT −

1
2 |ψT |2

(
∂2H

∂qT∂qT
: PΣΣTP

)
ψT
)
dt ,

while the equation of the barotropic PV (4a) remains unchanged. The above derived stochastic evolution
equation of the baroclinic PV, together with Eq. (4a) and the corresponding streamfunctions described by Eq.
(2), de�nes our stochastic 2-layer QG system.
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