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Wind-forced near-inertial waves form a high-energy wave component in the upper
ocean. The weakly dispersive nature of these large horizontal and small vertical scale
waves make them suitable candidates for energetic interactions with mesoscale balanced
flows. We take advantage of an idealized two-vertical-mode system obtained by projecting
the hydrostatic Boussinesq equations onto the barotropic and a single high baroclinic
mode to examine wave-balanced flow interactions. Our detailed analysis using results of
freely evolving numerical simulations demonstrate how the well established two-mode
quasigeostrophic turbulence phenomenology changes in the presence of high-energy near-
inertial waves. In the absence of waves, the barotropic flow, which contains most of the
balanced energy, undergoes an inverse energy cascade resulting in the formation of large-
scale coherent vortices. In contrast, high-energy near-inertial waves transfer energy to the
barotropic flow, facilitating a forward energy cascade of the balanced flow. The balanced
flow in turn assists in the forward energy cascade of the wave field, which transforms the
wave field from low-frequency near-inertial waves to high-frequency inertia-gravity waves.
Given that the idealized model we employ is two-dimensional, the forward energy cascade
of wave and balanced flow is an unexpected and intriguing feature.

DOI: 10.1103/PhysRevFluids.5.014801

I. INTRODUCTION

Near-inertial waves (NIWs), generated by atmospheric winds and storms, form a ubiquitous wave
field in the upper ocean. With roughly 0.3–0.7 TW being input into the near-inertial frequency band
by the atmospheric activity [1,2], understanding the dynamics of NIWs—specifically the formation
of small-scale waves from initially large-scale waves, vertical propagation from the mixed layer into
the thermocline, and the eventual wave breaking and three-dimensional turbulent mixing—is key to
quantifying oceanic interior energy pathways and localized diapycnal mixing. The large horizontal
and small vertical scales of NIWs makes them weakly dispersive, allowing them to remain in a
specific region longer than other rapidly propagating internal gravity waves, such as low baroclinic
mode internal tides, for example. This weakly dispersive nature makes NIWs suitable candidates
for energy exchanges with slow evolving geostrophic balanced flows in the upper ocean, inspiring
a wide variety of studies that have examined NIW-balanced flow interactions.

The NIW-balanced flow investigations of the past may be broadly divided into those focusing
on Ro ∼ 1 regime and Ro � 1 regime, Ro being the Rossby number of the flow. In the Ro ∼ 1
regime, Gertz and Straub [3] and Taylor and Straub [4] examined NIW-balanced flow interactions
using forced-dissipative large-scale ocean model simulations. Gertz and Straub found that at large
scales NIWs transferred energy to the balanced flow in small balance-to-wave energy regions
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while Taylor and Straub report that externally forced NIWs could be a potential sink for the
mesoscale balanced flow energy. Barkan et al. [5] used forced-dissipative simulations to point
out that NIWs not only extracted energy from the balanced flow but also assisted in transfer of
balanced energy from mesoscales to submesoscales. On a different route, multiple studies have
examined interactions between NIWs and balanced ocean fronts. Among these, Thomas and Taylor
[6] describes an interaction where NIWs, aided by parametric subharmonic instability, transfers
energy to the baroclinic balanced currents. Along the same lines, Nagai et al. [7] found that
spontaneously generated NIWs transferred energy to the Kuroshio front; this also being a case
where waves transferred energy to the balanced flow. However, Thomas [8] and Shakespeare and
Hogg [9] describe front-wave interactions resulting in waves gaining or losing energy to the mean
flow, depending on the relative alignment of the two fields.

The above discussion brings out the lack of a unified point of view on the direction of energy
transfer between NIWs and balanced flows. Of course, given that the equations governing the
dynamics of rotating stratified fluid flows are not known to favor any preferred energy flow
pathways, the lack of consensus on energy exchange is not much of a surprise. Each of the
previously described work is based on a specific configuration, making their results depend on the
detailed set up. Furthermore, in the regime Ro ∼ 1, wave-balanced flow decomposition is nontrivial,
since the linear and the nonlinear terms in the equations of motion are comparable in this regime.
The results for energy transfer pathways therefore depends on the strict definition of wave and
balanced flow used in the specific set up, contributing to the lack of a generic energy flow direction
between wave and balanced flow. In contrast, the wave-balanced flow decomposition is much more
transparent in the asymptotic regime Ro � 1. The decomposition in this regime can take advantage
of the linear equations, since the linear terms are asymptotically larger than the nonlinear terms.
Therefore without any ambiguity one can identify linear waves and a component that is orthogonal
to it—the geostrophic balanced flow. The orthogonality of wave and balanced flow based on the
linear equations imply that one can split quadratic invariants, such as energy, for example, exactly
into two parts: a part that is entirely due to waves and the remaining due to balanced flow alone (see,
for example, Deusebio et al. [10], Herbert et al. [11], and Waite [12]). This provides a clear means
of diagnosing wave-balance energy exchanges.

In the Ro � 1 regime, multiple studies have focused on deriving asymptotic models to examine
NIW-balanced flow energy exchanges. Young and Ben Jelloul [13] (YBJ hereafter) derived an
approximate asymptotic model for the evolution of NIWs in a mesoscale balanced flow field in
the limit of small amplitude waves. Recently Xie and Vanneste [14] (XV hereafter) developed a
coupled model, where the wave equation evolves according to the approximate YBJ equation, while
the balanced flow evolves according to a “quasigeostrophic like” equation, with nonlinear wave
interaction terms being part of it. XV used this approximate asymptotic model to argue that NIWs
directly extract energy from the balanced flow. Wagner and Young [15] (WY hereafter) extended
XV’s model, by adding a weak second harmonic inertial wave component (here “weak” means
that the second harmonic wave field’s magnitude was asymptotically smaller than that of the first
harmonic wave). The second harmonic wave being weak does not directly affect the balanced flow
in their model, implying that the asymptotic model of WY has the same balanced flow evolution
equation as XV. Nevertheless, WY used numerical simulations in a two-dimensional x-z plane to
demonstrate that the scattering of NIWs by the balanced flow can generate second harmonic inertial
waves. More recently, Rocha et al. [16] (RWY hereafter) projected the approximate asymptotic
model of XV onto the barotropic and a single plane wave in the vertical, resulting in a reduced two-
dimensional version of XV’s model in the x-y plane. RWY simulated this reduced two-dimensional
model to argue that NIWs could extract energy from a time evolving balanced flow.

In this work we examine energy exchanges between NIWs and balanced flows in the Ro � 1
regime by taking advantage of an idealized two-dimensional model obtained by projecting the
hydrostatic Boussinesq equations onto the barotropic and a single high-baroclinic mode. Our
approach is therefore complementary to that of RWY, who examined NIW-balanced flow energy
exchanges in a two-dimensional model obtained by a Galerkin truncation of the asymptotic model
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of XV. Notably, the key difference here is that we perform a Galerkin truncation of the parent
model—the hydrostatic Boussinesq equations—onto the barotropic and a single high baroclinic
mode. This means that our idealized two-dimensional model can form the starting point from which
coupled NIW-balanced flow asymptotic models such as those mentioned above can be derived. For
instance, Danioux et al. [17] and Thomas et al. [18] derived the YBJ equation from the same high
baroclinic mode equations that we use here. Therefore, our model, while being idealized due to its
two-dimensional nature, contains richer dynamics compared to the approximate asymptotic models
mentioned before.

Since we use a reduced yet nonasymptotic model, in the hierarchy of NIW-balanced flow studies
described earlier, our investigation falls between those that have used asymptotic models and those
that have used more complex three-dimensional models. Of course, we note that our reduced model
that allows only two vertical modes is expected to miss significant three-dimensional features.
Nevertheless, the idealization allows us to explore the NIW-balanced flow interactions in great detail
without making additional asymptotic approximations. The present investigation takes a similar
approach as that of Thomas and Yamada [19] (TY hereafter) who examined the energy exchanges
between first baroclinic mode internal gravity waves and balanced flows. Complementary to the
results discussed in TY, in this paper we will explain how high baroclinic mode NIWs modify
the two-mode quasigeostrophic turbulence phenomenology. The plan for the paper is as follows:
we discuss the model and its features in Sec. II, present results based on numerical simulations
examining NIW-balanced flow interactions in Sec. III, and conclude with discussions of our findings
in a broader context in Sec. IV.

II. THE MODEL AND ITS FEATURES

The hydrostatic Bousinesq equations on the “ f -plane” are
∂v

∂t
+ f × v + ∇p + v · ∇v + w

∂v

∂z
= 0, (1a)

∂b

∂t
+ N2w + v · ∇b + w

∂b

∂z
= 0, (1b)

∂ p

∂z
= b, (1c)

∇ · v + ∂w

∂z
= 0, (1d)

where v = (u, v) and w are the horizontal and vertical velocities, respectively, b is the buoyancy,
p is the pressure, f = f ẑ with f being the constant rotation rate and ẑ being the unit vector in the
z-direction, and N is the constant buoyancy frequency.

We expand all variables in terms of the barotropic and the nth baroclinic mode as

(v, p) = (vT , pT ) +
√

2(vC, pC ) cos

(
nπz

H

)
(2a)

(w, b) =
√

2(wC, bC ) sin

(
nπz

H

)
(2b)

Using the expansion Eqs. (2) and projecting Eqs. (1) on the two vertical modes gives us
∂vT

∂t
+ f × vT + ∇pT + vT · ∇vT + vC · ∇vC + (∇ · vC )vC = 0, (3a)

∇ · vT = 0, (3b)
∂vC

∂t
+ f × vC + ∇pC + (vT · ∇vC + vC · ∇vT ) = 0, (3c)

∂ pC

∂t
+

(
NH

nπ

)2

∇ · vC + vT · ∇pC = 0. (3d)

014801-3



JIM THOMAS AND S. ARUN

We nondimensionalize variables as

t → t/ f , x → L x, (vT , vC ) → U (vT , vC ), (pT , pC ) → fUL(pT , pC ). (4)

In the above scaling, time was nondimensionalized by the inertial timescale, 1/ f , while the length
of the domain, L, was used to scale spatial coordinates x and y. U above is a scale for velocity,
which may be considered to be the largest magnitude of the initial velocity prescribed in our freely
evolving simulations. The scale for pressure was chosen such that the Coriolis term balances the
pressure gradient term, i.e., f × v ∼ ∇p.

Using Eq. (4) to nondimensionalize Eqs. (3) gives us

∂vT

∂t
+ ẑ × vT + ∇pT + Ro[vT · ∇vT + vC · ∇vC + (∇ · vC )vC] = 0, (5a)

∇ · vT = 0, (5b)

∂vC

∂t
+ ẑ × vC + ∇pC + Ro(vT · ∇vC + vC · ∇vT ) = 0, (5c)

∂ pC

∂t
+ Bu∇ · vC + Ro(vT · ∇pC ) = 0, (5d)

where the Burger number, Bu = (NH/nπ f L)2 and Ro = U/ f L is the Rossby number. We rescale
baroclinic pressure as pC → Bu pC and rewrite the barotropic mode’s equation by taking the curl of
(5a) and defining ζT = ∇ × vT to get

∂ζT

∂t
+ Ro∇ × [vT · ∇vT + vC · ∇vC + (∇ · vC )vC] = 0, (6a)

∂vC

∂t
+ ẑ × vC + Bu∇pC + Ro(vT · ∇vC + vC · ∇vT ) = 0, (6b)

∂ pC

∂t
+ ∇ · vC + Ro(vT · ∇pC ) = 0. (6c)

Equations (6) is the reduced model we will use for our investigation. Galerkin truncated models
with two vertical modes, such as Eqs. (6), have been used for multiple idealized studies in the
past. Examples include Frierson et al. [20] studying atmospheric convective processes, Benavides
and Alexakis [21] examining the dynamics of thin fluid layers and associated turbulent energy
flow pathways, and TY investigating energetic interactions between balanced flows and low mode
internal tides in the ocean. The model used by TY consisted of the barotropic and the first baroclinic
mode, which is a special case of Eqs. (6) for n = 1. In contrast, in this work we will examine
interactions between high baroclinic mode NIWs and balanced flow. The baroclinic mode in our
study is therefore a high mode that contains NIWs and we are set in the regime n � 1 so that
Bu � 1.

A. The wave-balance decomposition

We set Ro = 0 in Eqs. (6) to obtain the linear equations:

∂ζT

∂t
= 0, (7a)

∂vC

∂t
+ ẑ × vC + Bu∇pC = 0, (7b)

∂ pC

∂t
+ ∇ · vC = 0. (7c)

The barotropic mode (whose vorticity is ζT ) is in geostrophic balance and has no linear time
evolution, as is clear from Eq. (7a). However, the baroclinic mode, whose evolution is captured
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by Eqs. (7b) and (7c)—equations identical to linear rotating shallow water equations—consists of a
linear combination of a geostrophic balanced component and a gravity wave component, which we
denote with subscripts G and W hereafter. The G-mode satisfy

ẑ × vG + Bu∇pG = 0, (8a)

∇ · vG = 0, (8b)

and the W-mode satisfy

∂vW

∂t
+ ẑ × vW + Bu∇pW = 0, (9a)

∂ pW

∂t
+ ∇ · vW = 0. (9b)

The wave equations given in Eqs. (9), which are identical to linear rotating shallow water wave
equations, captures the dynamics of a wide spectrum of waves with dispersion relationship:
ω = √

1 + Bu k2. Given that our study is based in the parameter regime Bu � 1, wave modes that
satisfy k ∼ 1 would qualify as NIWs, since for these waves Bu k2 � 1 ⇒ ω ∼ 1. In contrast, wave
modes that satisfy k � 1 such that Bu k2 � 1 will have frequencies ω � 1 and form high-frequency
inertia-gravity waves. Therefore the W-component in the reduced model Eq. (6) can in general
contain both low-frequency NIWs and high-frequency inertia-gravity waves, although we will
examine initial value problems where the wave field is initialized as NIWs.

The reduced model Eqs. (6) conserves the sum of the energies of the three components, T, G,
and W as

d

dt

∫∫ (
1

2
v2

T + 1

2
v2

W + 1

2
Bu p2

W + 1

2
v2

G + 1

2
Bu p2

G

)
dxdy = 0. (10)

The model Eqs. (6) is therefore a complete, albeit idealized, reduced model that can capture the
coupled evolution of waves and the balanced flow without relying on asymptotic approximations.
The three components of the model Eqs. (6) discussed so far are schematically shown in Fig. 1.

B. A reduction of the model

We will now examine a reduction of the model, Eqs. (6). Consider the reduction that ignores
the waves in the baroclinic mode. In this case we are left with the two balanced modes: T and G.
To derive an asymptotic model that governs their coupled evolution, we leave out the waves and
restrict the baroclinic fields to geostrophic balanced fields, i.e., vC = vG and pC = pG such that
vG = Bu ẑ × ∇pG. Using these in Eqs. (6), we get

∂ζT

∂t
+ Ro(vT · ∇ζT + vG · ∇ζG) = 0, (11a)

∂ζG

∂t
+ Ro(vG · ∇ζT + vT · ∇ζG) = 0, (11b)

∂ pG

∂t
+ Ro(vT · ∇pG) = 0, (11c)

where Eq. (11b) was obtained by taking the curl of Eq. (6b). Subtracting Eq. (11c) from Eq. (11b)
and setting pG = ψG, ζG = Bu�ψG, and ζT = �ψT , we get the quasigeostrophic (QG) equations
for the evolution of barotropic and baroclinic balanced flow as

∂

∂t
�ψT + Ro∂[ψT ,�ψT ] + Ro∂[ψG, (Bu� − 1)ψG] = 0, (12a)

∂

∂t
(Bu� − 1)ψG + Ro∂[ψT , (Bu� − 1)ψG] + Ro∂[ψG,�ψT ] = 0, (12b)
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Barotropic  
Balanced Flow (T)

Inertia-gravity 
Waves (W)

Baroclinic 
Balanced Flow (G)

k

FIG. 1. Schematic showing the three components of the model, Eqs. (6). The barotropic mode (denoted by
T) is balanced with no linear dynamics while the baroclinic mode consists of inertia-gravity waves (denoted by
W) and a balanced component (denoted by G). In the absence of waves, the two-mode QG Eqs. (12) describes
the interactions between the G and the T modes. In two-mode QG turbulence, the barotropic flow exhibits an
inverse energy cascade (shown by small leftward pointing black arrows in the T box), while the baroclinic
balanced flow exhibits a forward energy cascade (shown by small rightward pointing blue arrows in the G
box). (Notice that the wavenumbers, k, increases towards right, as shown by the long horizontal black arrow
at the bottom). Overall, the baroclinc flow loses energy to the barotropic flow in two-mode QG turbulence,
as indicated by the long blue arrow connecting the T and G boxes. In this study we will examine how high
baroclinic mode waves (indicated by the red box above), which are initially NIWs, can modify QG turbulence
phenomenology.

where ∂[ f , g] = fxgy − fygx is the Jacobian. Equations (12) are the two-mode QG equations for the
coupled evolution of the barotropic and the nth baroclinic mode. We note that Eq. (12) could have
been obtained by truncating the fully three-dimensional QG equation (see [22]) onto the barotropic
and the nth baroclinic mode.

We simulated Eq. (6) in the parameter regimes corresponding to the above reduction, completely
devoid of waves at t = 0. The numerical simulations presented here and later in this paper used
a dealiased pseudospectral code. Although Eqs. (6) are inviscid, we added hyperviscous terms:
ν�8ζT , ν�8vC , and ν�8 pC to the right-hand sides of Eqs. (6a)–(6c), respectively, to prevent
accumulation of energy at the grid scale. We used a resolution of 3842 (giving us a maximum
wavenumber of kmax = 128 in kx and ky directions after dealiazing) and ν = 2.4 × 10−34 for the
simulation results discussed in this paper. Numerical convergence was checked by performing
selected experiments with double resolution and half time step. For the wave-free simulation,
we used a random low wavenumber initialization for the T and G modes, i.e., initial conditions
were randomly prescribed for k � 6 in spectral space (and zero for higher wavenumbers) by
setting ET = Ro2, EG = Ro3, Ro = 0.1 (as will be clear in Sec. III, we will examine the case
ET = Ro2, EW = 1 regime in great detail, making the present wave-free simulations a precursor for
wave dominant regime simulations). Since oceanic observations and three-dimensional numerical
simulations point out the dominance of geostrophic energy in the barotropic and the first baroclinic
mode, with lesser and lesser energy in higher modes [23–26], we chose low energy for the high
baroclinic G-mode relative to the barotropic mode.

Figures 2(a) and 2(b) show the barotropic vorticity and the baroclinic potential vorticity (PV) for
this simulation, where we did not initialize waves. We observe the formation of large-scale coherent
vortices in the barotropic flow while the baroclinic PV field behaves more like a passive tracer being
stretched and deformed by the barotropic flow, resulting in the formation of small-scale vortices and
filaments. Additionally, we find that the G-mode transfers energy to the T-mode over the duration
of the simulation, as is shown in Fig. 2(c) (the green curve), while the T-mode gains energy (the
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FIG. 2. (a) Barotropic vorticity and (b) baroclinic PV at t = 5000 based on a simulation of Eqs. (6) with
initial conditions ET = Ro2, EG = Ro3, EW = 0. (b) Energy change (from initial time) of T, G, and W modes.

black curve) conserving total energy of the system. Furthermore, although not initialized, some
inertia-gravity waves are generated due to weakly nonlinear effects not captured to leading order in
Eq. (12). However, these waves are extremely weak with insignificant energy content, as shown by
the red curve in Fig. 2(c).

The phenomenology described above is as expected from QG dynamics based on Eq. (12)
[22,27,28], and is shown schematically in Fig. 1 by different arrows. The inverse energy cascade
that operates in the QG regime is known to transfer energy to low vertical wavenumbers (see,
for example, freely evolving three-dimensional QG simulations investigated by [23–25]). In our
two-vertical mode system, the high baroclinic G-mode undergoes a forward energy cascade and
loses energy to the barotropic mode, while the barotropic mode gains energy and exhibits an inverse
energy cascade. The small horizontal arrows in the T and G boxes in Fig. 1 symbolically represent
the inverse and forward energy cascades of the barotropic and baroclinc flow, respectively, while
the long blue arrow indicates energy transfer from the baroclinic to barotropic mode.

III. NEAR-INERTIAL WAVE EFFECTS ON GEOSTROPHIC TURBULENCE

As seen above, the barotropic flow organizes itself into large-scale coherent vortices in the
absence of waves. In this section we will examine how such a phenomenology can be modified
by NIWs. On exploring different parameter regimes of Eq. (6) by varying balance-to-wave energy
ratio, we found weak interactions in cases where wave and balanced flow energies were comparable
with the scaling UW ∼ UT or EW ∼ ET . In contrast, significant energy exchanges and changes to
the geostrophic turbulence phenomenology was observed in regimes with small balance-to-wave
energy ratio. Specifically, consider the distinguished regime: UW ∼ 1 and UT ∼ Ro (or EW ∼ 1 and
ET ∼ Ro2). This parameter regime, where waves are asymptotically stronger than the vortical field
so that the O(Ro) nonlinear wave interaction terms such as Stokes drift and pseudomomentum are
comparable in strength with the O(Ro) balanced flow, has been explored for surface waves [29–31],
NIWs (XV, WY, RWY), and internal tides (TY). TY identifies this as the strong wave (SW) regime.
Such high wave energy regimes are observed in the upper ocean when wind-forced NIWs are much
stronger than pre-existing balanced flow. An example situation is discussed in D’Asaro et al. [32],
where NIW velocity fields were observed to be an order of magnitude stronger than the balanced
flow.

Consider a thought experiment ignoring the G-mode temporarily and treating the baroclinic
mode (C) to consist of waves alone. In this case, the scaling UW ∼ 1 and UT ∼ Ro imply that the
barotropic-baroclinic interaction terms in Eqs. (6b) and (6c) scale as Ro2, since Ro premultiplies
the interaction terms. Consequently, weakly nonlinear modulation of waves by the balanced flow
takes place on a timescale 1/Ro2. However, given that the waves’ dispersion relationship is
ω = √

1 + Bu k2 with Bu � 1 for NIWs, slow modulation of the wave field due to dispersive effects
take place on 1/Bu timescale. Significant interactions between NIWs and balanced flow takes place
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when these two timescales match [see discussions in Thomas et al. [18]]. Consequently, we set
Bu ∼ Ro2 in our numerical experiments. In numerical experiments we observed relatively high
NIW-balanced flow energy exchanges for Bu � Ro2 and weak interactions for Bu � Ro2 (see the
discussion related to Figs. 11 and 12 at the end of this section).

The same scaling described above—waves’ dispersive timescale matching the wave-balance
interaction timescale—was used in the asymptotic works of XV, WY, and RWY. However, there is
a notable difference in the terminology we use in comparison to theirs. Recall that our investigation
focuses on the weakly nonlinear dynamics of Eq. (6) in the regime Ro � 1. Within our model,
examining the SW regime with UW ∼ 1 and UT ∼ Ro (or EW ∼ 1 and ET ∼ Ro2) implies that
Ro = U/ f L is defined based on the wave velocity, i.e., Ro = Rowave = UW / f L. (As pointed out
below the nondimensionalization Eq. (4), the velocity scale U may be thought of as the largest
velocity value prescribed initially. Since SW regime consists of high-energy waves and weak
balanced flow, U would be the scale for wave velocity, which appears in the definition of Ro.)
Concomitantly, since UT /UW ∼ Ro, the Rossby number based on velocity scale of the barotropic
flow would be Robalanced = UT / f L = Ro2. Therefore by setting Bu ∼ Ro2, we are basically
demanding that the Burger number is of the same order as the Rossby number defined based on
the balanced velocity field, i.e., Bu ∼ Robalanced. This exact scaling, i.e., Bu ∼ Robalanced, was used
in the asymptotic works of XV, WY, and RWY, with the key difference that they define Rossby
number based on balanced velocity.

Based on the above discussions, we will now examine results of a specific simulation that used
parameters: Bu = Ro2, EW = 1, ET = Ro2, and EG = 0 with Ro = 0.1 in great detail, and then
briefly discuss results in neighboring parameter regimes at the end of this section. We chose spatially
homogeneous initial data for the wave field as uW = c, vW = pW = 0, where the constant c was
fixed by setting EW = 1. The barotropic flow was initialized with ET = Ro2 using uncorrelated
random numbers at low wavenumbers (k � 6). On experimenting with different EG initial values
such that EG � ET at t = 0, we found almost no changes in turbulence phenomenology discussed
below, indicating that the magnitude of EG has a relatively weak influence on the turbulent dynamics
of the reduced model we examine. Additionally, on setting EG = 0 at t = 0, we found that the G-
mode extracts some energy from other modes, resulting in small but nonzero value for EG at t > 0.
We therefore set EG = 0 in this specific experiment we discuss in detail, allowing the G-mode to
evolve to an energy level based on its interaction with other modes, rather than prescribe it initially.

For the initial value problem described above, Fig. 3 shows the spatial structure, energy spectra,
and frequency spectra of the fields. As seen in Figs. 3(a)–3(d), the barotropic flow although shows
a tendency for vortex mergers early on, the flow develops a cascade to small scales, resulting in the
formation of small-scale vortices. The baroclinic balanced flow, although not initialized, is generated
by the interaction between waves and the barotropic flow. The magnitude of the baroclinic balanced
flow remains small throughout and was seen to have similar spatial structures as those of the
barotropic balanced flow shown in the first row of Fig. 3 (figures omitted). The wave field, although
homogeneous initially, generates small-scale features [see Figs. 3(e)–3(h)]. Figures 3(i)–3(l) shows
the energy spectra of W, T, and G modes. Observe the spikes that appear in the waves’ energy spectra
(the red curve) in Figs. 3(i) and 3(j). These spikes correspond to higher harmonics, ω = 2, 3, 4, etc.
Eventually, these higher harmonic waves start dominating over the balanced flow energy at these
scales: notice the wave energy spectrum climbing over the balanced flow spectrum in Fig. 3(k).
This process culminates in a state where a significant range of the waves’ spectrum dominates
over the T-mode’s spectrum, as seen in Fig. 3(l). Figures 3(m)–3(p) show the frequency spectrum
of uW at different times. Each frequency spectrum shown was obtained by ensemble averaging
the frequency spectrum of 10 arbitrary grid points. The waves’ frequency spectra clearly show a
broadening with the generation of higher harmonics from the initial spatially homogeneous inertial
oscillations. Notice that the spectrum at early times [Fig. 3(m)] is quite narrow with a sharp decay
away from the inertial frequency ω = 1. However, the generation of smaller scales in the wave
field is accompanied by the generation of higher wave harmonics, resulting in a broadband wave
frequency spectrum, as seen in Fig. 3(p).
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FIG. 3. Results of a simulation with Bu = Ro2 and Ro = 0.1 with initial conditions: ET = Ro2, EG = 0,
and EW = 1. (a)–(d) ζT , (e)–(h) wave speed,

√
u2

W + v2
W (i)–(l) total energy spectra of T, W, and G, and (m)–

(p) frequency spectra of uW . The four columns above correspond to four different times indicated above the
first row. The dashed vertical lines in frequency spectra correspond to frequencies: ω = 1, 2, 3, and 4. The
wavenumbers corresponding to these frequencies were obtained based on the dispersion relationship ω(k) =√

1 + Bu k2 and are marked by dashed vertical lines in the energy spectra.

Trapping of NIWs in anticyclonic vortical regions is a feature often seen in oceanic observations
and large-scale ocean model simulations [see, for example, Lee and Niiler [33] and Elipot et al.
[34]]. To check this feature in our idealized model, we computed the quantity R defined as

R =
〈
ζT EKE

W

〉√〈
ζ 2

T

〉〈
EKE

W
2〉 , (13)
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FIG. 4. Plotted above is the time series of the variable R defined in Eq. (13). Observe that R is negative
throughout, indicating that waves are positively correlated with anticyclonic regions in ζT , i.e., regions where
ζT < 0.

where EKE
W = 1/2(u2

W + v2
W ) is the wave kinetic energy (WKE) and angle brackets denote spatial

averaging over the domain. Figure 4 shows a time series of R for the experiment detailed in
Fig. 3. Observe that R is negative throughout, indicating the positive correlation between waves
and negative ζT regions (or anticyclones). An explanation for trapping of NIWs in anticyclonic
vortical regions based on conservation laws of NIW amplitude equations in different parameter
regimes can be developed when the barotropic flow is steady in time [see discussions in Danioux
et al. [17] and Thomas et al. [18]]. However, no similar straightforward explanation is available
when the barotropic flow evolves in time, as in our case, although trapping of waves in anticyclones
is reported in such cases as well (see discussions in RWY). Furthermore, we infer from Fig. 4 that R
is negative at all times, both at short times when wave and balanced fields are concentrated at large
scales, and at long times when wave and balanced fields consists of fine scale features.

In Fig. 5 we quantify the transition of the wave field from large-scale NIWs to small-scale high-
frequency inertia-gravity waves. Pure inertial oscillations, which was excited by our homogeneous
initial conditions, have zero wave potential energy (WPE) and nonzero wave kinetic energy. The
ratio of WPE to WKE plotted in Fig. 5(a) (the red curve) therefore starts at zero, although the
formation of small-scale features in the wave field seen in Fig. 3 is accompanied by an increase in
this ratio. The accelerated increase in the WPE:WKE ratio starts close to t = 1000, and continues

FIG. 5. (a) WPE:WKE ratio and the root-mean-square pressure gradient term. (b) eW (k, t ) showing the
fraction of the total wave energy contained in wavenumbers lower than k; see Eq. (14).
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until roughly around t = 3000, after which it asymptotes. Consequently, the wave field may be
identified as near-inertial for t < 1000, undergoing a transition to high-frequency waves from
t = 1000 to 3000, and as high-frequency waves for t > 3000. The curve showing root-mean-square
value of the waves’ pressure gradient term: Bu

√
〈(∇pW )2〉 in Fig. 5(a) adds to the previous

description. The pressure gradient term is asymptotically weak for NIWs, but becomes O(1) as
high-frequency waves form. The transition from NIWs to high-frequency waves is further clarified
by Fig. 5(b), which shows the fractional wave energy contained in low wavenumbers calculated as

eW (k, t ) =
[

s=k∑
s=0

ÊW (s, t )

]/[
s=kmax∑

s=0

ÊW (s, t )

]
, (14)

where ÊW (s, t ) denotes the total wave energy associated with wavenumber s. Since the waves’
dispersion relationship is ω(k) = √

1 + Bu k2, the frequencies of the wavenumbers shown in
Fig. 5(b) are ω(3) = 1.04, ω(4) = 1.08, ω(5) = 1.12, ω(6) = 1.17, and ω(7) = 1.22 (using Bu =
Ro2 = 0.01). We may choose k = 6 as the cutoff wavenumber and identify higher wavenumbers to
be outside the near-inertial frequency range, since wavenumbers k > 6 have frequency exceeding
the inertial frequency by more than 20%. Based on k = 6 as the cutoff wavenumber, we find that
by t = 5000 only 25% of the wave energy can be identified to be near-inertial, with the rest 75%
constituting high-frequency waves. If we chose a lower wavenumber as the cutoff wavenumber,
lesser energy would be associated with near-inertial waves by t = 5000. Irrespective of this cutoff
wavenumber, Fig. 5(b) shows that the transition to high-frequency waves begin roughly at t = 1000
and starts asymptoting around t = 3000.

Our examination of Fig. 5 helps us identify three different phases across which the dynamics
span. The first phase, roughly span up to t = 1000, and the wave field is near-inertial during this
period. The first and second column of Fig. 3 belongs to the first phase, characterized by the near-
inertial wave field acquiring spatial scales of the barotropic flow, and the barotropic flow beginning
to exhibit vortex mergers. Additionally, the generation of higher wave harmonics begins in this
phase [marked by the spikes in the wave energy spectra shown in Figs. 3(i) and 3(j)], although these
higher harmonics are energetically weak in this phase. The second phase spans from t = 1000 to
3000 and is the transition phase where the wave field changes from near-inertial to predominantly
high-frequency waves. The third column of Fig. 3 belongs to this phase, where both the wave and
the barotropic mode exhibits a transition from large to small scales, along with the formation of
high-frequency wave components which start to dominate over the barotropic mode’s energy as can
be seen in the energy spectra in Fig. 3(k) (recall the red curve overtaking the black curve there).
The final phase goes from t = 3000 onward, consisting of a broadband high-frequency wave field
and a barotropic flow field dominated by small-scale structures. As seen in the energy spectrum in
Fig. 3(l), the waves dominate over the balanced flow across a range of scales in this final phase.

We next examine energy exchange between waves and the balanced flow during these different
phases. Figure 6 shows the time series of the energy changes in T, W, and G modes, and additionally
the kinetic and potential energy change of waves. The three different phases discussed before can
be identified in Fig. 6(b). The first phase, roughly extending up to t = 1000, consists of relatively
low-energy transfers. For better visibility, part of this phase is shown in detail in Fig. 6(a). During
all three phases, we observe that wave potential energy (red curve with triangle markers) increases,
although wave kinetic energy (red curve with circular markers) decreases by a larger magnitude,
resulting in net drop in wave total energy (red curve with no markers). We also observe that the
G-mode’s energy (green curve) changes only by a negligible amount. Consequently, apart form
the energy lost to dissipation, the drop in waves’ total energy is compensated by an increase in
the barotropic modes energy (black curve). Aside from the specific details we discuss below, the
following observation summarizes the net energy exchange between waves and the balanced flow
throughout the evolution of the system: total wave energy decreases and the barotropic energy
increases, while negligible energy change is associated with the baroclinic balanced flow.
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FIG. 6. Change in energy of T, W, and G modes, and WPE and WKE. Panel (a) shows a short duration of
phase 1 while panel (b) shows the entire duration of the dynamics.

To examine the wave-balance triads responsible for the above described energy exchanges, we
apply the linear wave-balance decomposition to the governing equations. This gives us the energy
evolution equations of the three modes (similar analysis using three-dimensional models can be
found in Waite [12] and Deusebio et al. [10]). The energy equations of the T, W, and G modes are

∂ÊT (k, t )

∂t
= T̂T T T (k, t ) + T̂T GG(k, t ) + T̂T GW (k, t ) + T̂TWW (k, t ) − D̂T (k, t ), (15a)

∂ÊW (k, t )

∂t
= T̂W T G(k, t ) + T̂W TW (k, t ) − D̂W (k, t ), (15b)

∂ÊG(k, t )

∂t
= T̂GT G(k, t ) + T̂GTW (k, t ) − D̂G(k, t ). (15c)

In the above equations, ÊT (k, t ) = |v̂T (k, t )|2 is the T-mode’s energy, ÊW (k, t ) = |v̂W (k, t )|2 +
| p̂W (k, t )|2 is the total wave energy (sum of kinetic and potential energies), and ÊG(k, t ) =
|v̂G(k, t )|2 + | p̂G(k, t )|2 is the G-modes total energy at a specific wavenumber k. The T̂ (k, t ) terms
on the right-hand side capture different triadic interactions between T, W, and G modes. Finally, the
D̂(k, t ) terms above refer to the hyperdissipation acting at the wavenumber k.

We sum the terms in Eq. (15) from k = kmax to k = 0 to get the total energy change associated
with each specific term. We further time-integrate each term thus obtained from 0 to t to get net
energy change and associated interaction terms as

�ET (t ) = ET (t ) − ET (0) = ET GG(t ) + ET GW (t ) + ETWW (t ) − DT (t ), (16a)

�EW (t ) = EW (t ) − EW (0) = EW T G(t ) + EW TW (t ) − DW (t ), (16b)

�EG(t ) = EG(t ) − EG(0) = EGT G(t ) + EGTW (t ) − DG(t ). (16c)

The term ET T T is zero (since barotropic triadic interactions cannot change net energy of the
barotropic mode) and is therefore not included in Eq. (16a). The triadic terms in Eqs. (16) conserve
energy with respect to the specific set of modes considered, due to which we have the auxiliary
relationships:

ETWW (t ) + EW TW (t ) = 0, (17a)

ET GG(t ) + EGT G(t ) = 0, (17b)

ET GW (t ) + EW T G(t ) + EGTW (t ) = 0. (17c)
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Equation (17a) states the condition that the total energy exchange between waves and the
barotropic mode must be conserved under nonlinear interactions, while Eq. (17b) is a similar
condition for energy exchange between G and T modes. Finally, Eq. (17c) expresses the constraint
that total energy exchange due to mixed barotropic-baroclinic balanced-wave modes must be
conserved.

Figure 7 shows the time evolution of the terms in Eq. (16). For convenience in interpreting results,
we present the barotropic energy budget in Figs. 7(a) and 7(b), wave energy budget in Figs. 7(c)
and 7(d), and the baroclinic balanced flow’s energy budget in Figs. 7(e) and 7(f). As in Fig. 6,
we split Fig. 7 to show a shorter duration on the left and the entire duration on the right. In the
first phase, Fig. 7(a) shows that the barotropic energy increases (black curve) due to direct transfer
by NIWs via the term ETWW (see the blue curve), other triadic interaction terms being relatively
weak. On checking the waves’ energy budget given in Fig. 7(c), we find that NIWs lose energy
(continuous red curve) exclusively due to transfer to the T-mode via the triad EW TW (blue curve),
the triad EW T G being insignificant (note that the curves EW T G and DW lie on top of each other
and are negligible in magnitude). Finally, observe in Fig. 7(e) that the G-mode’s energy, although
initially zero, increases (see the green curve), the triadic term EGTW (see the brown curve) acting
as the primary source. We also note that dissipation is almost entirely negligible in the first phase:
observe that the dashed curves in Figs. 7(a), 7(c), and 7(e) representing energy dissipation of T, W,
and G-mode are insignificant. The first phase is therefore characterized by NIWs directly feeding
the barotropic balanced flow as per Eq. (17a).

The second phase extending roughly from t = 1000 to 3000 is characterized by accelerated
energy transfers between different modes. The formation of energetic high-frequency and smaller
scale wave field features (seen in the third column of Fig. 3) goes hand-in-hand with rapid drop in
the wave energy and corresponding increase in the barotropic mode’s energy, as seen in the black
and red curves in Figs. 7(b) and 7(d), respectively. On examining the detailed energy transfer terms
in Fig. 7(b), we find that the barotropic mode receives energy via direct transfer from waves via
the term ETWW (blue curve) and the baroclinic balanced flow via the term ET GG (orange curve)
while the mixed triadic term ET GW (brown curve) acts as its energy sink. The effects of ET GG and
ET GW are almost equal and opposite, resulting in T-mode gaining energy as if direct transfer by
the ETWW term was its sole source. On examining the waves’ energy budget in Fig. 7(d), we see
that the wave energy decreases due to the direct transfer to the barotropic mode via the EW TW term
(blue curve). Additionally, we observe that EW T G (brown curve) is small but negative, forming a
sink for wave energy. Therefore, although phase 2 is characterized by significantly more energy
changes than phase 1, the net energy transfer directions are similar in these two phases: waves
lose energy and the barotropic flow gains energy, while the G-mode has little energy. Examining
the G-mode’s energy budget in Fig. 7(f) reveals the reason for G-mode’s little energy content.
Observe that although the G-mode is fed directly by the mixed triadic EGTW term (see brown
curve), almost comparable amount of energy is transferred by the G-mode directly to the T-mode
via the EGT G term (orange curve) resulting in little increase in the energy of the G-mode. A distinct
feature of the second phase, in addition to the formation of small scales in wave and balanced
flow and the rapid energy exchanges described above, is that dissipation of the flow begins here, as
seen by examining the dashed curves in Figs. 7(b), 7(d), and 7(f). The dissipation curves start to
become nonzero roughly around t = 2000, steadily dropping thereafter. This is an indication that
the small scales formed in phase 2, seen in Figs. 3(c) and 3(g) have started reaching dissipative
scales.

The final phase, roughly extending from t = 3000 to 5000 is characterized by similar energy
transfer directions as in phase 2, although the magnitudes of energy change decreases. The
barotropic energy is seen to reach a saturated state [black curve in Fig. 7(b)] although waves continue
to lose energy [red curve in Fig. 7(d)], with wave dissipation being significant in this phase. The
G-mode behaves as in phase 2: the energy gain from EGTW almost equals energy loss via EGT G

resulting in negligible net energy gain for the G-mode [green curve in Fig. 7(f)].
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FIG. 7. Time series of the energy exchange terms given in Eq. (16). Panels (a) and (b) show the barotropic
mode’s budget based on Eq. (16a); panels (c) and (d) show the wave’s budget based on Eq. (16b); and panels
(e) and (f) shows the baroclinic balanced flow’s budget based on Eq. (16c). Note that in panel (c) above, the
time series of EW TW and �EW overlap, while EW T G and DW are negligible in magnitude and lie on top of each
other.

To complement above examination of the net energy exchanges between modes, we will now
examine the spectral fluxes. This will clarify the energy flow pathways across spatial scales in
each mode. We sum Eq. (15) from the maximum wavenumber kmax to k to obtain the energy flux
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equations of T , W , and G modes as

∂E	
T (k, t )

∂t
= 	T T T (k, t ) + 	T GG(k, t ) + 	T GW (k, t ) + 	TWW (k, t )︸ ︷︷ ︸

	T

−D	
T (k, t ), (18a)

∂E	
W (k, t )

∂t
= 	W T G(k, t ) + 	W TW (k, t )︸ ︷︷ ︸

	W

−D	
W (k, t ), (18b)

∂E	
G (k, t )

∂t
= 	GT G(k, t ) + 	GTW (k, t )︸ ︷︷ ︸

	G

−D	
G (k, t ), (18c)

Eq. (18a) is the equation for the rate of change of the barotropic energy E	
T (k, t ) contained in the

spectral band [k, kmax], i.e., E	
T (k, t ) = ∑k

s=kmax
ÊT (s, t ). The barotropic flux 	T and dissipation D	

T
constitute the right hand side of Eq. (18a). Notice that the total barotropic flux 	T is the sum of four
different triadic contributions, i.e., 	T = 	T T T + 	T GG + 	T GW + 	TWW . Similarly, Eqs. (18b)
and (18c) gives the spectral energy flux equations of W and G-modes with their respective fluxes
	W and 	G being decomposed in to separate triadic contributions such that 	W = 	W T G + 	W TW

and 	G = 	GT G + 	GTW . The triadic fluxes given in Eqs. (18) are plotted at t = 2000 in Fig. 8,
with separate plots corresponding to large scales, k � 15, on the left and smaller scales, k > 15, on
the right.

Observe in Figs. 8(a) and 8(b) that the total barotropic energy flux, 	T , is positive at both large
and small scales, indicating a forward cascade of T-mode’s energy. At large scales (k � 15), both
	TWW and 	T GG are positive and comparable, whose sum over powers the negative flux due to
	T T T and 	T GW . In contrast, at smaller scales (k > 15), 	T GG is weak and the positive value of
	TWW alone over comes the negative flux due to 	T T T and 	T GW . Consequently, we conclude
that the waves assist in the forward energy cascade of the barotropic flow. We also observe that
the total wave energy flux 	W is positive in Figs. 8(c) and 8(d), indicating a forward wave energy
cascade. At large scales, k � 15, the wave flux is dominated by 	W T G, which exceeds 	W TW , both
being positive. 	W T G is seen to be positive at smaller scales as well, though it is much smaller
in magnitude compared to 	W TW . The balanced flow—both barotropic and baroclinic—therefore
assists in the forward cascade of wave energy. Finally, the G-mode’s energy fluxes shown in
Figs. 8(e) and 8(f) point out that except for the first few wavenumbers, the total G-flux 	G is positive
with dominant contribution from the 	GT G flux—indicating a forward cascade of G-mode’s energy.

Our examination of spectral fluxes above points out that all three modes—T, W, and G—undergo
a forward energy cascade, which concur with the physical fields shown in Fig. 3. The wave field
is assisted by the barotropic and baroclinic balanced flow in its forward cascade, resulting in a
high-frequency wave field with small scales. Additionally, the wave field facilitates the forward
cascade of the balanced flow energy, especially the barotropic flow, resulting in the formation of
small-scale features in the barotropic flow. The forward cascade of wave and balanced flow fields
therefore goes hand in hand with the energy transfer from waves to the barotropic balanced flow. In
the interest of space we discussed spectral fluxes only at a certain time (shown in Fig. 8), although
similar qualitative phenomenology was observed at different times we checked. At earlier times the
fluxes were primarily concentrated at large scales with smaller values at high wavenumbers, while
at late times we found that the magnitudes of the fluxes were higher than those seen in Fig. 8 at high
wavenumbers.

Given above description of the energy exchange between waves and balanced flow, we recall that
all of the analysis so far relies on the linear wave-balance decomposition, i.e., the barotropic flow
is in geostrophic balance, while the baroclinic flow is orthogonally decomposed into inertia-gravity
waves and a geostrophically balanced flow. To examine the wave field in more detail, we checked the
frequency spectra of individual wavenumbers of the wave field at different times and an example is
given in Fig. 9, which shows the frequency spectra of the wave field corresponding to three different
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FIG. 8. Spectral fluxes computed at t = 2000 based on Eq. (18). The fluxes were time-averaged over a
window �t = 25 to remove high-frequency fluctuations.

wavenumbers. Observe that the red colored frequency spectra in Fig. 9, obtained from numerical
simulations, peaks around the linear wave frequency (obtained from the dispersion relationship at
those wavenumbers and is shown by dashed vertical lines) and rapidly decays away from it. The
numerical and linear waves’ frequency predictions agree quite well, except for high wavenumbers
with less energy (notice that the y-axis maxima of Fig. 9 drops with increasing k). This behavior, of
high wavenumbers with low-energy levels showing slight departures from linear wave frequencies,
is expected in wave-turbulence interaction experiments since the wave-balance decomposition based
on the linear equations would break down at smaller scales, where the distinction between linear
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FIG. 9. Frequency spectra of three wavenumbers. The dashed vertical lines on each plot indicate the
linear wave frequency corresponding to that specific wavenumber based on the dispersion relationship:
ω(k) = √

1 + Bu k2.

wave and turbulent dynamics is lost (see Kafiabad and Bartello [35] and Deusebio et al. [10] for
similar phenomenology in three dimensions). Based on our waves’ frequency spectra analysis,
we conclude that the wave field interacting and exchanging energy with the balanced flow is
predominantly linear.

We next examine the frequency spectra of the barotropic flow, which based on our examination of
Figs. 6 and 7 gains almost the entire energy lost by the waves, apart from dissipation. Since the wave
energy is O(1) and balanced energy is O(Ro2) in this regime, nonlinear wave interactions would
project on the barotropic flow, resulting in high-frequency fluctuations in the barotropic flow. This
is confirmed in Fig. 10(a), where the black curve shows the frequency spectrum of uT obtained by
ensemble averaging the frequency spectrum of 10 arbitrary grid points. Notice that high-frequency
fluctuations are present in this frequency spectrum, showing the effect of wave-interactions. To
extract a slow-evolving barotropic flow from the total barotropic flow, we performed a running time
average of the barotropic vorticity:

ζT (x, y, t ) = 1

�t

∫ t+�t/2

t−�t/2
ζT (x, y, τ )dτ, (19)

which was used to compute the slow-evolving barotropic fields and thereby the slow-barotropic
energy. We used �t = 25 as our averaging window width. The red curve in Fig. 10(a) shows the

FIG. 10. (a) Frequency spectrum of uT before (black) and after (red) the running time averaging based on
Eq. (19) was performed. (b) Evolution of the slow (red) and unaveraged (black) barotropic flow energy.
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FIG. 11. Bu = 2Ro2 with initial conditions: ET = Ro2, EG = 0, and homogeneous wave field with EW = 1.

time averaged frequency spectrum, from which it is clear that the time averaging operation reduces
high-frequency fluctuations. Figure 10(b) shows the evolution of the total barotropic flow energy and
the slow-barotropic flow energy. We find that the slow energy agrees with the total energy quite well,
the difference being less than 4%. We therefore conclude that the energy gain of the barotropic flow
is primarily associated with the slow-component, with fast fluctuations carrying negligible energy.

Having examined the case Bu = Ro2 with initial conditions: ET = Ro2, EG = 0, and homoge-
neous initial wave field with EW = 1, we will now briefly discuss how the above results would differ
on changing parameters. Although the simulation described before used a spatially homogeneous
initial NIW field, we found similar phenomenology on initializing the simulations with a spatially
inhomogeneous NIW field. Similarly, the previously discussed dynamics used EG = 0 at t = 0,
although the G-mode was seen to extract some energy as the flow evolved. The initial value of
EG was not seen to influence the phenomenology discussed in detail earlier. We found similar
qualitative behavior on initializing the system with nonzero EG values, such as EG = Ro3 while
ET = Ro2. We conclude this section by discussing two different cases obtained by changing Bu. To
examine the effect of the Burger number, we simulated two cases with Bu = 2Ro2 and Bu = Ro2/2
while Ro = 0.1, the results being shown in Figs. 11 and 12. Observe that a higher Bu (=2Ro2)
delays the transition from phase 1 almost until t = 3000 while a lower Bu (=Ro2/2) accelerates
the transition, which takes place around t = 500. We therefore conclude that the phenomenology
described in detail earlier in this section would take place much more rapidly for high baroclinic
modes and slower for low baroclinic modes.

FIG. 12. Bu = Ro2/2 with initial conditions: ET = Ro2, EG = 0, and homogeneous wave field with
EW = 1.
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FIG. 13. Schematic showing energy flow pathways between the three modes based on our simulations. The
barotropic flow receives energy from waves via the EW TW term. Although the baroclinic balanced flow gains
energy from both waves and the barotropic mode by EGTW = EW T G + ET GW , the magnitude of this energy
gain is comparable with the amount of energy the baroclinic balanced mode directly transfers to the barotropic
mode via the EGT G term. As a result, the baroclinic balanced mode’s energy remains relatively small at all
times. Importantly, all three modes exhibit a forward energy cascade, resulting in the generation of small-scale
features in the balanced and wave fields. The small horizontal arrows pointing right indicates this, wavenumber
k increasing from left to right. Concomitant with the generation of small-scale features, the waves’ forward
energy cascade transforms the wave field from NIWs at early times to a high-frequency inertia-gravity wave
field at later times.

Based on our analysis so far, the energy flow pathways within our reduced model is summarized
in Fig. 13, with the arrows between the boxes denoting the energy transfer between modes while
arrows within each box denotes energy flow within each mode. Overall, the barotropic flow gains
energy from waves (EW TW ) and the baroclinic balanced flow (EGT G). The baroclinic balanced
flow’s energy remains significantly weak at all times, since the energy it gains from waves and
the barotropic flow (EGTW = EW T G + ET GW ) is close to the amount it loses to the barotropic
flow (EGT G). Consequently, the net energy exchange between the three modes may therefore be
summarized as waves losing energy and the barotropic flow gaining energy.

We conclude this section by comparing our findings with that of TY, where low mode internal
tide-balanced flow interactions were examined. To capture the dynamics of internal tides, TY used
the first baroclinic mode resulting in Bu ∼ O(1). Additionally, the usage of the first baroclinic mode
meant that the G-mode in that study contained energy comparable to the T-mode. In contrast, we
used a high baroclinic mode with Bu � 1, resulting in a G-mode containing significantly low energy
compared to the T-mode. The G-mode was seen to be energetically weak throughout the duration
of our experiments. Another distinguished feature of this study is the forward energy cascade of
the modes. No forward energy cascade of the modes were observed in TY, since all the energy
exchanges and turbulence phenomenology was observed to take place at large scales (see Fig. 8
there). In contrast, NIW-balanced flow interactions in Bu � 1 regime exhibits a forward energy
cascade of both wave and balanced fields, resulting in small-scale features. This suggests a transition
of the turbulent energy flow pathways as one decreases Bu from O(1) values to asymptotically small
values, this transition being similar to that exhibited in many other physical systems as detailed in
Alexakis and Biferale [36].

IV. SUMMARY AND DISCUSSION

NIWs, generated by atmospheric winds and storms, is an energetically dominant wave field in the
upper ocean and their weakly dispersive nature gives rise to the possibility of energy exchange with
pre-existing mesoscale balanced flow. An improved understanding of various wave-balanced flow
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energy exchanges is crucial to uncover detailed oceanic energy flow pathways. Such investigations,
i.e., energetic interactions between NIWs and balanced flow, have been undertaken in both low
and high Rossby number regimes. Notably, multiple NIW-balanced flow investigations in the low
Rossby number regime have taken advantage of approximate asymptotic coupled NIW-balanced
flow interaction models (XV, WY, and RWY). Our goal in this work was to examine energy
exchanges between NIWs and balanced flow in the Ro � 1 regime using an idealized model without
relying on asymptotics. Towards this goal, we derived a reduced nonasymptotic model by projecting
the hydrostatic Boussinesq equations onto the barotropic and a single high baroclinic mode.

We begin with the obvious: although our model was nonasymptotic and consists of richer dy-
namics than asymptotic models mentioned above, the two-vertical-mode equations definitely loses
some of the crucial features of the three-dimensional Boussinesq equations. Therefore the reader is
once again reminded that the results we discuss are strictly within our restricted two-dimensional
system. The two-vertical mode model consists of three components: barotropic balanced flow (T),
baroclinic balanced flow (G), and inertia-gravity waves (W). A precursor to this study is that of
TY, where a two-vertical-mode model was used to examine internal tide-balanced flow energy
exchanges. Consequently, TY investigated energetic internal tide-balanced flow interactions while
our investigation focused on NIW-balanced flow interactions.

Using the two vertical mode system, we examined the energy flow pathways between NIWs and
balanced flows. Our detailed analysis of energy transfer between the different modes and across
spatio-temporal scales of the modes allowed us to deduce the change in geostrophic turbulence
phenomenology due to high-energy NIWs. In the absence of waves, the barotropic flow, which
contains most of the balanced flow energy, would organize itself into domain filing coherent
vortices. In contrast, high-energy waves transfer energy to the balanced flow and promotes a forward
cascade of the barotropic balanced flow to smaller scales. Similarly, the balanced flow actively
facilitates a forward cascade of waves’ energy, transforming waves from large-scale NIWs to small-
scale high-frequency inertia-gravity waves. Given that our model was completely two-dimensional,
the forward energy cascade of wave and balanced flow is an intriguing feature. The overall energy
flow pathways between the three modes is summarized in Fig. 13.

Although the long term dynamics consisting of high-frequency and small-scale waves and small-
scale balanced flow would be inaccessible for existing asymptotic models that are derived for a few
eddy turn over timescales, one might have anticipated the early time energy exchange between NIWs
and balanced flow in our set up to agree with the results of the asymptotic predictions discussed in
XV, WY, and RWY. Such an expectation is natural, since the baroclinic Eqs. (6b) and (6c) were used
by Danioux et al. [17] and Thomas et al. [18] to derive the YBJ equation. Therefore, starting from
our two-mode system (6), we could have proceeded along the same lines as XV and WY and derived
an asymptotic model for the coupled evolution of NIWs and the barotropic balanced flow (ignoring
the baroclinic balanced flow for simplicity). In such an asymptotic model, the wave field would
evolve according the approximate YBJ equation while the balanced flow equation would consist of
the barotropic vorticity and quadratic nonlinear wave-wave interaction terms. Most importantly, the
asymptotic model derived starting from our two-vertical-mode equations would predict the same
phenomenology as that discussed in RWY—NIWs would extract energy from balanced flow, their
potential energy increasing due to direct extraction from the balanced flow while their kinetic energy
being conserved.

For the specific case we examined in great detail with Bu = Ro2, observe in Fig. 6(a) that the
wave potential energy increases by about 5 × 10−4 within a few eddy turn over timescales. On
decreasing the Burger number to Bu = Ro2/2 (which corresponds to a higher baroclinic mode than
the case where Bu = Ro2) we find that wave potential energy increases by about 2 × 10−3 within
a few eddy turn over timescales, as seen in Fig. 12(a). Furthermore, as discussed earlier, notice in
Figs. 6(a) and 12(a) that the G-mode has insignificant energy and dissipation is negligible. Therefore
if wave kinetic energy was conserved in our simulations, while other things remained unchanged, the
barotropic mode’s energy would have decreased by an amount equal to the increase in wave potential
energy so as to conserve total energy of the system. Since ET = Ro2 = 0.01 in our experiments, this
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would imply that balanced flow would have lost approximately 5% and 20% energy within a few
eddy turn over timescales in the cases shown in Figs. 6(a) and 12(a), respectively. Consequently,
if wave kinetic energy was conserved, we would have concluded that NIWs extracted 5–20% of
barotropic mode’s energy. This is close to the magnitude of energy change predicted by coupled
NIW-barotropic mode simulations discussed in XV and RWY—see Fig. 3 in XV, Fig. 8(a) in
RWY and related discussions. Numerical experiments in XV predict about 5–10% loss in balanced
energy while RWY predicts 10–20% balanced energy extraction by NIWs. However, contrary to
the predictions of these asymptotic models, in our experiments NIWs kinetic energy was seen to
decrease more than the increase in NIWs potential energy, resulting in net decrease in NIWs energy
and corresponding increase in balanced energy. Consequently, our simulations point out that NIWs
feed balanced energy in low balance-to-wave energy regimes and not the other way around.

Multiple restrictive assumptions used in the derivation of the asymptotic models contribute
to their predictions differing from our findings. First, NIWs in the asymptotic models evolve
according to the approximate YBJ equation—a model that conserves wave kinetic energy. In
contrast, as seen in our numerical experiments, NIW kinetic energy is not conserved. Second,
the balanced flow in these asymptotic models is an approximate Lagrangian mean flow derived
based on two-timescale asymptotics. It is important to note that the Lagrangian mean flow in
general is not in geostrophic balance [37,38]. As demonstrated using reduced models and direct
numerical simulations in Thomas et al. [39], the Lagrangian mean flow can have a significant
unbalanced component. The specific asymptotic derivations undertaken by XV and WY assume
the Lagrangian mean flow to be in geostrophic balance, discarding unbalanced contributions. This
approximate balanced flow is coupled with linear waves in the asymptotic models described above.
The asymptotic assumptions involved in their derivation plays a key role in results leading to their
prediction that NIWs directly extract energy from balanced flows via wave potential energy increase
while wave kinetic energy remains constant. Our simulations of a nonasymptotic two-vertical-mode
model—a parent model from which similar asymptotic models could be derived—stress the need
to improve existing asymptotic models of NIW-balanced flow interactions so that their predictions
agree with energy transfer directions predicted by parent models such as ours.

In spite of our reduced model being capable of capturing much more dynamics than the
asymptotic NIW-balanced flow models, we once again remind the reader that our idealized two-
dimensional model would miss important three-dimensional features. We therefore conclude by
discussing how the phenomenology we found in two-dimensions would change in three dimen-
sions. In three-dimensional hydrostatic Boussinesq equations, gravity waves have the dispersion
relationship ω =

√
1 + Bu k2/n2 (k and n being the horizontal wavenumber and the baroclinic

mode, respectively), implying that different horizontal wavenumbers and vertical modes, k and
n, can be associated with the same frequency ω as long as they have the same k/n ratio.
However, projecting the three-dimensional equations to a single baroclinic mode modifies the
waves’ dispersion relationship as ω = √

1 + Bu k2. Consequently, a forward energy cascade in two
dimensions (resulting in the generation of larger k values with time) must necessarily generate
higher frequencies in the wave field, as we observed in our simulations. In contrast, a forward
wave energy cascade in three dimensions can take place by the concomitant generation of higher
k and n values, without much change in the wave frequencies [40–42]. In other words, given a
balanced flow, in three dimensions a forward cascade of wave energy can take place at more or
less the same frequency as the original wave field, whereas a forward cascade in two dimensions is
necessarily associated with the generation of higher frequency components. This forms the primary
difference between the two-dimensional results reported in this paper and the three-dimensional
results anticipated in similar set ups. Our preliminary three-dimensional simulations in similar set
ups as described in this work, at small Rossby numbers and low balance-to-wave energy regimes,
clearly show NIWs transferring energy to the balanced flow along with small-scale formation and
dissipation of both wave and the balanced flow – phenomenology similar to that uncovered in this
work. A major difference, however, is that the wave forward cascade takes place before significant
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broadening of the frequency spectrum takes place. We expect to report on three-dimensional
NIW-balanced flow interactions in the near-future.
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