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We introduce a unified variational framework in which the classical balance models for
nearly geostrophic shallow water as well as several new models can be derived. Our
approach is based on consistently truncating an asymptotic expansion of a near identity
transformation of the rotating shallow water Lagrangian. Model reduction is achieved by
imposing either degeneracy (for models in a semigeostrophic scaling) or incompressibility
(for models in a quasigeostrophic scaling) with respect to the new coordinates.

At first order, we recover the classical semigeostrophic and quasigeostrophic equations,
Salmon’s L1 and large-scale semigeostrophic equations, as well as a one-parameter fam-
ily of models that interpolate between the two. We identify one member of this family,
different from previously known models, that promises better regularity—hence consis-
tency with large-scale vortical motion—than all other first order models. Moreover, we
explicitly derive second order models for all cases considered. While these second order
models involve nonlinear potential vorticity inversion and do not obviously share the
good properties or their first order counterparts, we offer an explicit survey of second
order models and point out several avenues for exploration.
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1. Introduction
In a series of articles, Salmon proposed new approximate models for nearly geostrophic

flow in a layer of shallow water (1983, 1985), and in a layer of stratified fluid of finite
depth (1996). The derivation is an example of variational asymptotics: all approximations
are performed on the Lagrangian of the parent fluid model before Hamilton’s principle
is applied to yield new equations of motion. One of the chief advantages of this ap-
proach is that preservation of time and particle relabeling symmetries guarantees exact
conservation of a new energy and potential vorticity in the approximate system.

Salmon’s approximation consists of two steps. First, noting that the stationary leading
order geostrophic balance defines a submanifold in phase space, he constrains the full La-
grangian to this ‘slow manifold’. The symplectic structure of the constrained variational
principle is typically non-canonical. Salmon therefore suggests to apply, in a second step,
a near-identity transformation to simpler, possibly canonical coordinates. Although a
transformation to canonical coordinates must exist, an explicit expression can only be
given to some order in the Rossby number ε, the formal small parameter; higher order
terms are consistently dropped.

While built-in structure preservation is clearly an attractive feature, it does not guar-
antee even well-posedness of the resulting balance models. In fact, the large-scale semi-
geostrophic (LSG) equations of Salmon (1985), as well as their generalizations to stratified
flows, turn out to be ill posed (Shepherd & Ford, 2001; Ford, private communication,
2000). In the hope of turning the LSG equations into a well-behaved model without losing
their simple structure, we noted that the second order generalization of LSG possesses
a positive definite Hamiltonian—clearly a desirable feature, but insufficient to guaran-
tee existence of a flow. Regularity of potential vorticity inversion is equally crucial, but
explicitly violated in LSG.

The new idea presented here is that the two steps in Salmon’s procedure—constraining
and transforming—can be reversed in order. We will start out with an arbitrary change
of coordinates which reduces to the identity when the perturbation parameter ε van-
ishes. Both the transformation and the Lagrangian of the parent shallow water equations
can thus be expanded in powers of ε and consistently truncated at the desired order
of accuracy. At this point, the transformation is completely arbitrary, so that we can
impose, order by order, conditions on the transformation that assure that the system is
constrained to a submanifold in phase space, or that the correct leading order balance is



Variational asymptotics for shallow water 3

maintained. The advantages are threefold. First, we can systematically identify degrees
of freedom that leave structure and formal order of the reduced model invariant, but can
be tuned to optimize desirable features such as the regularity of the potential vorticity
inversion. Second, we have a procedure that allows us, at least in principle, to develop
higher order models in a systematic fashion. Third, we can study balance models in a
unified framework that includes all the classical balance models for rotating shallow wa-
ter: the semigeostrophic and quasigeostrophic equations, Salmon’s L1 and LSG models,
and many new ones.

In the last two decades, a large number of authors have explored the variational route
to deriving or analyzing balance models for rotating fluids. Allen & Holm (1996) de-
rive a class of balance models by imposing second order constraints on the variational
principle. The authors also note the distinct role of affine Lagrangians very explicitly.
Their work differs from ours in that they treat the approximation of the symplectic
structure and of the Hamiltonian as independent. Our point of view is that the concept
of consistently truncating a change of coordinates provides a rigid dependence between
the respective approximations; in other words, we supply a systematic way of deriving
dependences between some of Allen & Holm’s free parameters. Holm & Zeitlin (1998)
introduce the variational formulation for the quasigeostrophic equations; independently,
Bokhove, Vanneste & Warn (1998) give a derivation of the quasigeostrophic equations
via a constrained expansion of the shallow water variational principle. McIntyre & Roul-
stone (2002) review and systematically explain the structure of models based on work-
less momentum–configuration constraints, and suggest several generalizations of classical
semi-geostrophic theory. Using the language of “velocity splits” coined by McIntyre &
Roulstone, Wunderer (2001) and Roullet (2004) generalized Salmon’s L1 equations to
second order. Roullet’s L2 equations, being non-local in time, clearly differ from ours
which do not have non-local terms. The relative merits of the two approaches are cur-
rently not well understood and remain to be explored. Finally, Vanneste & Bokhove
(2002) show how to translate Salmon’s variational asymptotics into asymptotics on the
corresponding Poisson structure, and also suggest a generalization to higher order.

The present paper is laid out as follows. Section 2 reviews the two most important mod-
els for rotating shallow water, the semigeostrophic and the quasigeostrophic equations.
In Section 3, we explain our new approach for a finite dimensional, linear toy prob-
lem. In this simple situation, we have the opportunity to compare the reduced model
with explicitly computed solutions of the parent dynamics. Section 4 introduces the La-
grangian formalism for fluids with particular emphasis on affine and incompressible fluid
Lagrangians, which will play a major role as target Lagrangians leading to model re-
duction in the semigeostrophic and the quasigeostrophic scaling, respectively. We discuss
asymptotics in the variational principle as a means of deriving reduced models, and give
a brief derivation of Salmon’s L1 and LSG models within this general framework.

The main part of the paper is the derivation of the following three distinct model
hierarchies.

The LSG hierarchy includes Salmon’s L1 and LSG equations at first order, as well as a
one-parameter family of models interpolating between the two. It is characterized by the
condition that the reduced Lagrangian is affine, i.e. linear in the velocities. This implies
that the resulting equation of ‘motion’ does not include time derivatives of the velocity
field u—it defines a kinematic relationship between u and the mass configuration h. Dy-
namics enters via the continuity equation or, equivalently, via the advection of potential
vorticity. Since the reduced Lagrangian is always degenerate, a Dirac constraint is im-
plied by construction. Finally, time derivatives of u generally enter when transforming
back to physical coordinates although they are absent from the equations of motion to
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any order. Section 5 details the derivation of the LSG hierarchy for the rotating shallow
water equations.

The quasigeostrophic hierarchy, introduced in Section 6, yields the classical quasi-
geostrophic equations at first order. It is characterized by the condition that the trans-
formed dynamics be incompressible up to the required order. The resulting reduced La-
grangian is always a regular incompressible fluid Lagrangian. Hence, the dynamics resides
in the momentum equation, while the continuity equation reduces to the zero-divergence
condition. In physical coordinates, of course, weak compressibility is recovered.

Finally, Section 7 recovers the classical semigeostrophic equations as the first order of
the semigeostrophic hierarchy. While the scaling is the same as for the LSG hierarchy,
the conditions we impose are subtly different. We require that the new coordinates are
canonical, and the velocity in new coordinates equals the geostrophic velocity in old
coordinates. Our transform generalizes the Hoskins (1975) transform at order two and
higher.

In each case, we explicitly compute to second order. At first order, only the LSG hier-
archy yields something new: a model, in a certain sense half-way between L1 and LSG
dynamics, that promises superior regularity properties relative to all other first order
models. The first order computations in the remaining two cases yield well known mod-
els. However, our approach still provides a constructive derivation for the variational
formulation of quasigeostrophy, and we obtain an interpretation of the geostrophic mo-
mentum approximation as a truncated near-identity change of coordinates.

At second order, we derive the corresponding models of each hierarchy; in the case of
the LSG approach there is a five-parameter family of models, while the other two hierar-
chies are unique at second order as well. Except for trivial examples in the LSG hierarchy,
all second order models require nonlinear and apparently non-elliptic potential vorticity
inversion. Therefore, well-posedness and numerical implementation are not obvious, and
we mainly point out the questions that need to be asked. Thus, with regard to second
order models this paper raises more questions than it answers. In the final discussion,
Section 8, we point out possible approaches to second order models and other extensions
of our ideas.

2. The classical nearly geostrophic limits
2.1. Distinguished scaling limits

We first sketch the two main distinguished scaling limits of the rotating shallow water
equations, the semigeostrophic and the quasigeostrophic equations.

We take the simplest possible nontrivial case—the rotating shallow water equations
with constant Coriolis parameter on the plane. In this model, which we regard as the
standard against which the accuracy of all other models must be judged, the evolution
of the horizontal velocity u = u(x, t) and fluid depth h = h(x, t) is governed by

∂tu + u · ∇u + f u⊥ + g∇h = 0 , (2.1a)
∂th+ ∇ · (hu) = 0 , (2.1b)

where u⊥ = (−u2, u1), f is the Coriolis parameter, and g the constant of gravity. We
assume that h approaches a constant, and u vanishes at infinity. In all of the following,
we take f to be constant, though the fundamental ideas extend to the general case.

We first non-dimensionalize the shallow water equations. Let U be the horizontal veloc-
ity scale, L the horizontal geometric length scale, and H the mean layer depth. Through-
out, we take the advective time scale T = L/U and assume that the Rossby number ε is
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small, i.e.,

ε =
U

fL
� 1 . (2.2)

We also define the Burger number

B =
gH

f2L2
. (2.3)

The shallow water equations in non-dimensionalized variables then read

ε (∂tu + u · ∇u) + u⊥ +
B

ε
∇h = 0 , (2.4a)

∂th+ ∇ · (hu) = 0 . (2.4b)

We are interested in the physical regime where the pressure gradient force balances the
Coriolis force to leading order. In other words, we seek a leading order geostrophic balance
relation of the form

uG = ∇⊥h . (2.5)
The resulting geostrophic motion is stationary, as can be checked by substituting (2.5)
back into the continuity equation (2.4b).

There are two distinguished scaling limits that result in leading order geostrophic
balance. If we admit order one variations in the total depth, balance requires that B = ε.
This is called the semigeostrophic scaling. On the other hand, we can allow for a Burger
number of order one if the total depth is an O(ε) variation of a constant mean depth.
Thus, in this so-called quasigeostrophic scaling we keep B = 1 and

h = 1 + ε h1 , (2.6)

so that ∇h = O(ε).
Before proceeding further, we set up notation that is crucial later, but already useful

now. We then present traditional derivations of the next order corrections to geostrophic
balance in each of the two scalings.

2.2. Notation
Throughout this paper, we adapt conventions that are less used in the geophysical
literature, but have proved—conceptionally as well as regarding the ease of symbolic
manipulation—extremely useful. We generally view velocities as vector fields and trans-
formations as diffeomorphisms of the plane, avoiding explicitly working in coordinates
throughout. Most of the following could easily be written in geometrically intrinsic no-
tation; this, however, is not the point here.

First, we employ fixed-slot notation, always stating changes of variables explicitly.
Thus, if u = u(x, t) denotes the Eulerian velocity of a fluid, and η = η(a, t) the corre-
sponding flow map—the fluid particle initially at location a is at location x = η(a, t) at
time t—then the Lagrangian velocity of this fluid particle must be

∂tη(a, t) = u(η(a, t), t) , (2.7)

which we abbreviate, throughout, by

η̇ = u ◦ η . (2.8)

In this notation, the continuity equation (2.4b) is equivalent to

h ◦ η =
1

det ∇η
, (2.9)
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where derivatives are always taken with respect to the natural arguments.
Second, throughout this paper we will encounter near-identity changes of coordinates

which are eventually expanded in the perturbation parameter ε. When such a trans-
formation ξε is introduced, we endow quantities in old (physical) coordinates with an ε
subscript, and leave the corresponding quantities in the new (computational) coordinates
unsubscripted. In particular, flow maps then transform as

ηε = ξε ◦ η . (2.10)

Third, being sloppy about the distinction between vector fields and forms, we write an
explicit “·” to denote the dot product between two vectors, and no multiplication sign
for vector-matrix multiplication, which takes precedence. Thus, for example,

u · ∇v w = (∇v)T u · w = ui (∂jvi)wj . (2.11)

2.3. The semigeostrophic equations
The semigeostrophic equations arise from a single approximation, the geostrophic mo-
mentum approximation, where the advected velocity, but not the advecting velocity, is
replaced by the geostrophic velocity (Eliassen 1948, 1962):

(∂t + u · ∇)u → (∂t + u · ∇)uG . (2.12)

Keeping with the conventions introduced in the previous section, we endow all quantities
in old coordinates with an ε subscript, so that the semigeostrophic momentum equation
reads

ε (∂t + uε · ∇)∇⊥hε + u⊥
ε + ∇hε = 0 . (2.13)

This equations combines with the continuity equation into a single prognostic equation for
the layer depth hε, whose remarkable structure is exposed through the so-called Hoskins
transformation. Hoskins (1975) introduced new semigeostrophic coordinates via

η = ηε + ε∇hε ◦ ηε , (2.14)

where the transformation is written in terms of the Lagrangian flows, and ∇hε ◦ ηε =
(∇hε)(ηε(a, t), t). Going to Eulerian positions, the transformation ξε is implicitly defined
through

id = ξε + ε∇hε ◦ ξε . (2.15)
By differentiating (2.14) in time, we obtain

η̇ = u ◦ η = uε ◦ ηε + ε
(
∇ḣε ◦ ηε + (∇∇hε) ◦ ηε η̇ε

)
= ∇⊥hε ◦ ηε , (2.16)

where the last equality is due to the semigeostrophic momentum equation (2.13). In other
words,

u = ∇⊥hε ◦ ξε ; (2.17)
the new velocity u equals the geostrophic velocity in the old coordinates. Further, (2.9)
and (2.10) imply that

h = hε ◦ ξε det ∇ξε . (2.18)
The right hand expression can be closed in geostrophic coordinates as follows. First,
taking the gradient of (2.15), using (2.17), yields

I = ∇ξε − ε∇u⊥ , (2.19)

where I denotes the 2× 2 identity matrix, so that

det ∇ξε = det(I + ε∇u⊥) . (2.20)
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Second,

∇(hε ◦ ξε) = (∇ξε)
T (∇hε) ◦ ξε = −(I + ε∇u⊥)T u⊥ = −u⊥ − 1

2 ε∇|u|2 . (2.21)

Thus, if we define a stream function ψ by

hε ◦ ξε = ψ − 1
2 ε |∇ψ|2 , (2.22)

then u ≡ ∇⊥ψ satisfies (2.17). Inserting (2.20) and (2.21) back into (2.18), we obtain

h = (ψ − 1
2 ε |∇ψ|2) det(I− ε∇∇ψ) . (2.23)

Direct computation shows that the potential vorticity q = 1/h is materially conserved,
so that

(∂t + ∇⊥ψ · ∇)h = 0 . (2.24)

Potential vorticity advection together with the nonlinear elliptic Monge–Ampère equation
(2.23) are a closed system for the semigeostrophic dynamics in geostrophic coordinates.

The Hoskins transform can also be interpreted as a Legendre transformation; see Cullen
& Purser (1984, 1989), and Benamou & Brenier (1998) for a proof of well-posedness based
on this structure.

For later reference, we remark that the conservation of potential vorticity is easily
translated back into physical coordinates. From (2.19), we infer that

I = (I + ε∇∇hε) ◦ ξε ∇ξε , (2.25)

so that

q =
1
h

=
1

hε ◦ ξε det ∇ξε

=
det(I + ε∇∇hε) ◦ ξε

hε ◦ ξε

≡ qε ◦ ξε (2.26)

and conservation of potential vorticity takes the form

d
dt

(qε ◦ ηε) =
d
dt

(q ◦ η) = 0 . (2.27)

Moreover, the semigeostrophic equations conserve the energy

Hε = 1
2

∫ [
ε |∇hε|2 + hε

]
hε dx . (2.28)

Both conservation laws arise naturally when deriving the semigeostrophic equations vari-
ationally in Section 7.

2.4. The quasigeostrophic equations
In the second important distinguished scaling limit, the quasigeostrophic scaling, the
Burger number is of order one, but variations of the surface amplitude are small. When,
as in (2.6), the deviation of the surface amplitude from equilibrium is denoted εh1, the
quasigeostrophically rescaled shallow water equations read

ε (∂tu + u · ∇u) + u⊥ + ε−1 ∇(1 + ε h1) = 0 , (2.29a)
ε ∂th1 + ∇ · ((1 + ε h1)u) = 0 . (2.29b)

At the lowest order ε = 0, (2.29a) again yields a geostrophic balance relation,

uG = ε−1 ∇⊥h = ∇⊥h1 . (2.30)

Substituting (2.30) back into the continuity equation (2.29b) simply confirms that uG is
divergence free. The quasigeostrophic equations are the next order correction to geostro-
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phic balance. We make the ansatz

u = uG + εuA , (2.31)

where uA denotes the ageostrophic component of the velocity field, substitute into (2.29),
and collect first order terms. The contributions from momentum and continuity equation,
respectively, are

uA = −(∂t + uG · ∇) ∇h1 , (2.32a)
∂th1 + ∇ · uA = 0 . (2.32b)

Substituting the former equation into the latter, we obtain the quasigeostrophic potential
vorticity equation

(∂t + uG · ∇) (h1 −∆h1) = 0 . (2.33)

Finally, the quasigeostrophic equations possess the conserved “energy”

H = 1
2

∫ (
h2

1 + |∇h1|2
)
dx . (2.34)

3. A finite dimensional example
As a caricature of the rotating shallow water equations in semigeostrophic scaling, we

consider the system of coupled harmonic oscillators

ε q̈ε = −Ωqε + Jq̇ε , (3.1)

where qε : R → R2, Jq ≡ q⊥ = (−q2, q1), and Ω = diag{ν2, ω2} is a constant diagonal
2× 2 matrix. The corresponding Lagrangian is

Lε = 1
2 ε |q̇ε|2 − V (qε)−R(qε) · q̇ε , (3.2)

where

R(q) = 1
2 Jq and V (q) = 1

2 qT Ωq . (3.3)

Physically, this system describes the planar motion of a charged particle with harmonic
restoring forces in a magnetic field perpendicular to the plane. The mass of the particle
is ε, while all other parameters are scaled to unity.

When ε is small, both the components of qε form almost decoupled fast harmonic oscil-
lators. In addition, the matrix J on the right of (3.1) introduces an additional symplectic
structure independent of ε whose canonical coordinates are the two position coordinates
q1 and q2. We note that when ε = 0, this structure is the only to survive; the correspond-
ing Lagrangian is affine, i.e. it is linear in the velocities.

Our goal is to derive an effective equation for the slow evolution of q1 and q2 when ε
is small, but different from zero. This toy model, being linear, can of course be solved
explicitly by diagonalization, and the desired answer can be obtained by brute-force
asymptotic expansion of the solution. However, the algebra involved is already sufficiently
involved that a symbolic manipulation package is very helpful. The approach that we
propose is computationally much simpler, does not depend on the linearity of the system,
and will directly carry over to the rotating shallow water equations.

The key idea is to introduce a near-identity change of (position) variables that can be
expanded in powers of ε, insert this expansion into the Lagrangian, truncate to a con-
sistent power in ε, and fix the coefficients of the transformation such that the truncated
system is affine. This last step is the crucial closure assumption: The higher order terms
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in the expansion are determined from the lower order terms such that the leading or-
der (affine) structure is maintained. A simple application of the Hamilton principle then
yields the effective equations of motion from the truncated transformed Lagrangian. The
transformation can be undone a posteriori to the order of the approximation.

In finite dimensions, the procedure is simpler than for motion of the diffeomorphism
group. The required near identity transformation of the positions can be written straight-
forwardly as the asymptotic expansion

qε = q + ε q′ + 1
2 ε

2 q′′ +O(ε3) . (3.4)

We compute

R(qε) · q̇ε = 1
2

(
q⊥ + ε q′

⊥ + 1
2 ε

2 q′′
⊥)

·
(
q̇ + ε q̇′ + 1

2 ε
2 q̇′′

)
+O(ε3)

= 1
2 q⊥ · q̇ + ε q⊥ · q̇′ + 1

2 ε
2 (q⊥ · q̇′′ + q′

⊥ · q̇′) +O(ε3) (3.5)

up to perfect time derivatives which are null-Lagrangians,

V (qε) = 1
2

(
q + ε q′ + 1

2 ε
2 q′′

)T Ω
(
q + ε q′ + 1

2 ε
2 q′′

)
+O(ε3)

= 1
2 qT Ωq + ε qT Ωq′ + 1

2 ε
2 (qT Ωq′′ + q′

T Ωq′) +O(ε3) , (3.6)

and
1
2 ε |q̇ε|2 = 1

2 ε |q̇|
2 + ε2 q̇ · q̇′ +O(ε3) . (3.7)

Altogether, we find the expansion

Lε = L0 + εL1 + 1
2 ε

2 L2 +O(ε3) (3.8)

where, again dropping perfect time derivatives whenever convenient,

L0 = − 1
2 q⊥ · q̇ − 1

2 qT Ωq , (3.9)

L1 = 1
2 |q̇|

2 + q̇⊥ · q′ − qT Ωq′ , (3.10)

L2 = 2 q̇ · q̇′ + q̇⊥ · q′′ − q′
⊥ · q̇′ − qT Ωq′′ − q′

T Ωq′ . (3.11)

The crucial step now is to impose degeneracy conditions, i.e. to choose q′ and q′′ that
render the truncated Lagrangian affine to first and second order. At O(ε), we must set

q′ = − 1
2 q̇⊥ + any function of q . (3.12)

For simplicity, we restrict ourselves to

q′ = − 1
2 q̇⊥ + λΩq . (3.13)

This choice is motivated by the observation that q′ vanishes—at least for a particular
value of λ—when the toy model is in ‘geostrophic balance’. With this choice of q′, we
obtain

L1 = −( 1
2 + λ) (Ωq)⊥ · q̇ − λ qT Ω2q . (3.14)

It is easily verified that the Euler–Lagrange equations for an affine Lagrangian of the
form

L = q̇ · F (q) + g(q) (3.15)
are

∇⊥ · F q̇⊥ = ∇g , (3.16)
so that the reduced dynamics for our toy model including terms up to O(ε) reads[

1 + ε ( 1
2 + λ)(ω2 + ν2)

]
q̇⊥ = (Ω + 2ελΩ2) q . (3.17)
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This is a harmonic oscillator with frequency

µ = ων

√
1 + 2ελν2

√
1 + 2ελω2

1 + ε ( 1
2 + λ)(ω2 + ν2)

. (3.18)

Note that the first order contribution is independent of λ, and coincides with the expan-
sion of the slow eigenvalues of the full system to this order. In other words, λ is indeed a
free parameter. In the special case when λ = 1

2 , the frequency given by (3.18) is accurate
even to O(ε2). This case corresponds to q′ = 0 in (3.13) if the dynamics were exactly
following the leading order ‘geostrophic balance’ dynamics.

Note further that the reduced dynamics does not represent the full system up to and
including O(ε) terms—the fast contributions to q1 and q2 are O(ε), but are absent in the
reduced system. Finally, the reconstruction of the solution in the original coordinates via
(3.4) adds only amplitude corrections and is therefore only of interest with regard to the
initialization of the reduced dynamics.

The second order computation is only slightly more involved. By inserting the first
order degeneracy condition into L2, we obtain

L2 = q̇⊥ ·
[
q′′ + 3

4 q̈ − 1
4 Ωq̇⊥ + λ (Ωq̇)⊥

]
− qT Ωq′′ + λ q̇⊥ · Ω2q − λ2 (Ωq)⊥ · Ωq̇ − λ2 qT Ω3q . (3.19)

Choosing
q′′ = − 3

4 q̈ + 1
4 Ωq̇⊥ + ( 3

4 − λ) (Ωq̇)⊥ (3.20)
will render L2 affine. Of course, as in the first order degeneracy condition, we could add
arbitrary functions of q only—we will do so when we apply the method to the rotating
shallow water equations. Staying with (3.20) for the time being, the resulting degenerate
L2 Lagrangian is

L2 = q̇ ·
[
( 1
4 − λ) (Ω2q)⊥ + ( 3

4 − λ− λ2) Ω(Ωq)⊥
]
− λ2 qT Ω3q (3.21)

Completing the Euler–Lagrange equations to second order yields a harmonic oscillator
equation with frequency

µ =
ων
√

1 + 2ελν2 + ε2λ2ν4
√

1 + 2ελω2 + ε2λ2ω4

1 + ε ( 1
2 + λ)(ω2 + ν2)− 1

2ε
2( 1

4 − λ)(ω4 + ν4)− ε2( 3
4 − λ− λ2) ν2ω2

. (3.22)

By explicitly expanding in powers of ε, we can show that this expression is independent
of λ up to second order, i.e. λ remains a free parameter.

A complete analysis of this toy system for linear and nonlinear potentials, including
proofs of convergence which generalize the above observations, is provided in forthcoming
work (Gottwald & Oliver, 2005; Gottwald, Oliver & Tecu, 2005). We finally remark that
this system is more appropriate for illustrating the working of our method than the
elastic pendulum, which has been explored as a simple model for atmospheric balance by
Lynch (2002). Moreover, our model does not intend to address the issue of spontaneous
generation of inertia-gravity waves, which has been studied in low-dimensional models
starting with Lorenz (1980). For recent results and a more complete history of this line
of research see, for example, Vanneste (2004).

4. Variational principles in fluid dynamics
This section introduces the variational framework for equations of rotating fluid flow.

None of this material is original; the goal of this section is to collect pertinent results in
consistent notation.
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4.1. Rotating shallow water Lagrangians

Our parent system, the rotating shallow water equations (2.4), are the equations of a
barotropic fluid with pressure function π = lnh. The configuration space is formally the
semidirect product of the group of diffeomorphisms of the plane, the space of flow maps
η, with the vector space of smooth functions, the space of densities h.

Fluid Lagrangians are invariant with respect to the tangent lift of the natural group
action on this semidirect product—simply speaking, they depend on Eulerian velocities
and advected quantities only—and can therefore be treated in the framework of Euler–
Poincaré reduction (see, e.g., Holm, Marsden & Ratiu, 1998, and Arnold & Khesin,
1998). In practical terms, this means that the equations of motion, the Euler–Poincaré
equations, can be obtained by taking variations, fundamentally with respect to the flow
map η and vanishing at the temporal end points, of the action

S =
∫ t2

t1

L[u, h] dt . (4.1)

The Lagrangian variations δη induce variations of the Eulerian quantities u and h as
follows. First, taking the variational derivative δη means differentiating along a curve on
the diffeomorphism group. Hence, we can associate an Eulerian vector field w = w(x)
via

δη = w ◦ η . (4.2)

For compressible flow, w is arbitrary, while for incompressible flow, variations of the flow
map must remain area preserving—the corresponding vector field w must be divergence
free. By differentiating (4.2) in time and taking the variational derivative of (2.7), we
obtain the so-called Lin constraint (Bretherton, 1970),

δu = ẇ + ∇w u−∇u w . (4.3)

Since h−1 ◦η = det∇η, the Liouville theorem applied to the flow generated by w, where
the variational parameter is playing the role of time, directly implies the “continuity
equation”

δh+ ∇ · (wh) = 0 . (4.4)

Thus, we have a way of translating between the Lagrangian variation δη and the associ-
ated Eulerian variations δu and δh. In practice, we will choose whichever formulation is
more convenient for the task at hand, and move freely between the two.

As a first example, take the semigeostrophically scaled rotating shallow water La-
grangian (Salmon, 1983),

L =
∫ [

(R + 1
2 εu) ◦ η · η̇ − 1

2 h ◦ η
]
da

=
∫
h

[
R · u + 1

2 ε |u|
2 − 1

2 h
]
dx , (4.5)

where R denotes the vector potential of the Coriolis parameter, so that ∇⊥ ·R = f ≡ 1.
Plugging L into the action integral and taking variations, we find

δS =
∫ t2

t1

∫ [
δh (R · u + 1

2 ε |u|
2 − h) + h (R + εu) · δu

]
dx dt . (4.6)

Inserting the constrained variations (4.3) and (4.4), integrating by parts in space and
time, using the continuity equation ḣ+ ∇ · (uh) = 0, the time independence of R, and
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collecting terms, we obtain straightforwardly that

δS =
∫ t2

t1

∫
hw ·

[
(∇RT −∇R) u− ε u̇− ε∇u u−∇h

]
dx dt . (4.7)

Due to identity (A 6), the terms in the square bracket yield precisely the shallow water
momentum equation (2.4a) with semigeostrophic scaling B = ε.

One of the main advantages of the variational route is that the conservation of energy
and potential vorticity is built into the formalism. This can be made explicit by writing
out an extended Lagrangian that separates symplectic structure from the Hamiltonian,

L =
∫

F (u) ◦ η · η̇ −H[u, h] , (4.8)

where a priori u and η̇ are treated as independent quantities; the relationship η̇ = u ◦η
is recovered by taking variations in u (see, e.g., Salmon 1983). We can then show that H
is the Noetherian conserved quantity arising from time translation invariance, and that
the potential vorticity

q =
∇⊥ · F

h
(4.9)

is the materially conserved quantity arising from the invariance under particle relabeling
(see, e.g., Ripa 1981). A fully variational derivation of the conservation of potential
vorticity involves taking variations that do not vanish at the temporal end points along
a trajectory satisfying the Euler–Poincaré equations of motion, so that only boundary
terms arising from integration by parts remain.

For the semigeostrophically scaled rotating shallow water equations, the extended La-
grangian reads

L =
∫

(R + εu) ◦ η · η̇ da−H , (4.10a)

H = 1
2

∫ [
ε |u|2 + h

]
◦ η da , (4.10b)

with the well known potential vorticity

q =
1 + ε∇⊥ · u

h
. (4.11)

We now discuss two important special cases: affine Lagrangians and Lagrangians for
incompressible fluids, which will arise as Lagrangians of nearly geostrophic models in the
semigeostrophic and the quasigeostrophic limit, respectively. We derive general equations
of motion and the corresponding conservation laws for each.

4.2. Affine Lagrangians
Consider an affine (degenerate) Lagrangian of the form

L =
∫ (

F (h) ◦ η · η̇ − g(h) ◦ η
)
da =

∫
h (F (h) · u− g(h)) dx , (4.12)

where F and g are arbitrary functionals of the layer depth h. We insert this Lagrangian
into the action integral and take variations with respect to η, using DF to denote the
Fréchet-derivative of F and DF ∗ to denote the formal L2 adjoint thereof:

δS = δ

∫ t2

t1

∫ (
F (h) ◦ η · η̇ − g(h) ◦ η

)
da dt
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=
∫ t2

t1

∫ (
(δF ) ◦ η · η̇ + (∇F ) ◦ η δη · η̇ + F ◦ η · δη̇

− (δg) ◦ η − (∇g) ◦ η δη
)
da dt

=
∫ t2

t1

∫ (
(DF (h)δh) ◦ η · η̇ − Ḟ ◦ η · δη − (∇F −∇F T ) ◦ η η̇ · δη

− (Dg(h)δh) ◦ η − (∇g) ◦ η δη
)
da dt

=
∫ t2

t1

∫
h

(
DF (h)δh · u−DF (h)ḣ · w −w · u⊥ ∇⊥ · F

−Dg(h)δh−w · ∇g
)
dx dt

=
∫ t2

t1

∫ (
δhDF ∗(h) · (hu)− hw · Ḟ − hw · u⊥ ∇⊥ · F

− δhDg∗(h)h− hw · ∇g
)
dx dt

=
∫ t2

t1

∫
hw ·

(
∇(DF ∗(h) · (hu))− Ḟ − u⊥ ∇⊥ · F

−∇(Dg∗(h)h)−∇g
)
dx dt . (4.13)

Since w is arbitrary, the vanishing of δS yields the degenerate Euler–Poincaré equation

∇(DF ∗(h) · (hu))− Ḟ − u⊥ ∇⊥ · F = ∇(Dg∗(h)h) + ∇g . (4.14)

Note that Ḟ = DF (h)ḣ, so that all time derivatives can be eliminated via the continuity
equation—we obtain a diagnostic relationship between h and u.

To derive the expression for the potential vorticity, we could follow the Noetherian
approach and work explicitly with the particle relabeling symmetry; see, for example,
Bridges, Hydon & Reich (2001). However, it turns out to be much easier in this case to
directly take the curl of (4.14),

∇⊥ · Ḟ + ∇ · (u ∇⊥ · F ) = 0 , (4.15)

whence, dividing through by h and using that ḣ+∇·(hu) = 0, we find that the potential
vorticity

q =
∇⊥ · F (h)

h
(4.16)

is advected by the velocity field u,

∂tq + u · ∇q = 0 . (4.17)

Similarly, the conservation of the Hamiltonian

H =
∫
h g(h) dx (4.18)

follows from Noether’s theorem, or can easily be verified by direct computation.
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4.3. Incompressible fluid Lagrangians
We consider the general case of an incompressible, rotating fluid with a Lagrangian of
the form

L =
∫

(R + N(u)) · u dx , (4.19)

where N is a potentially nonlinear operator acting on u. We take variations that are, as
before, subject to the Lin constraint (4.3). Since the flow is incompressible, the vector
fields u and w are divergence free, so that

δS =
∫ t2

t1

∫ (
R · δu + N(u) · δu + DN(u)δu · u

)
dx dt

=
∫ t2

t1

∫ (
R + N(u) + DN∗(u)u

)
· δu dx dt

=
∫ t2

t1

∫
F ·

(
ẇ + ∇w u−∇u w

)
dx dt

= −
∫ t2

t1

∫
w ·

(
Ḟ + (∇F −∇F T ) u

)
dx dt

= −
∫ t2

t1

∫
w ·

(
Ḟ + u⊥ ∇⊥ · F

)
dx dt , (4.20)

where we have used identity (A 6) in the last step, and

F ≡ R + N(u) + DN∗(u)u . (4.21)

Since w is an arbitrary divergence free vector field, the expression in parentheses on the
right of (4.20) must be zero modulo gradients. Therefore, the Euler–Poincaré equations
of motion are

∂tF + u⊥ ∇⊥ · F + ∇p = 0 , (4.22)

p being the pressure which is determined via the incompressibility constraint ∇ · u = 0.
The corresponding potential vorticity equation is most easily obtained by taking the curl
of this expression,

(∂t + u · ∇) ∇⊥ · F = 0 , (4.23)

and the conserved energy takes the form

H = 1
2

∫
u · N(u) dx . (4.24)

A general computation of this type in the context of the quasigeostrophic equations has
previously appeared in Holm & Zeitlin (1998).

4.4. Variational asymptotics: L1 and LSG dynamics
The fundamental idea, pioneered by Salmon (1993, 1985, 1996) is to derive approximate
equations for nearly geostrophic flow by approximating the Lagrangian rather than the
equations of motions directly. If the approximation preserves time translation and particle
relabeling symmetries, the resulting approximate system will possess proper analogues
of the original conserved energy and potential vorticity.

In this section, we first recall Salmon’s approach, who proceeds in two steps. He ini-
tially constrains the Hamiltonian phase space to the submanifold defined by geostrophic
motion. The resulting system are called the L1 equations. In a second step, he introduces
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a near-identity change of variables that, when only keeping terms to the same consis-
tent asymptotic order, yields a simpler system in canonical coordinates, the large-scale
semigeostrophic (LSG) equations.

Any imposed functional dependence u = F (h) of the Hamiltonian momentum on
the mass configuration in the extended variational principle (4.8) defines a constraint
manifold in the Hamiltonian phase space. In particular, choosing geostrophic balance

u = ∇⊥h (4.25)

as the constraint, we obtain the affine Lagrangian

Lc =
∫ [

(R + ε∇⊥h) ◦ η · η̇ − 1
2 (ε |∇h|2 + h) ◦ η

]
da . (4.26)

The resulting Euler–Poincaré equations of motion are[
1− ε (h∆ + 2∇h · ∇)

]
u = ∇⊥[

h− ε (h∆h+ 1
2 |∇h|2)

]
, (4.27)

which, for given h, is a second order elliptic problem for the velocity u. The computation,
using the formalism set up in Section 4.2, is a special case of Section 5.2; the reader is
referred to this later section for details. The corresponding potential vorticity, computed
directly from (4.16), reads

q =
1 + ε∆h

h
. (4.28)

Setting

u = ∇⊥h+ uA , (4.29)

where uA is the ageostrophic part of the velocity field, and using identity (A 10), we can
rewrite (4.27) as an elliptic equation for uA,[

1− ε (h∆ + 2∇h · ∇)
]
uA = ε

[
h∆∇⊥h+ 2 ∇h · ∇∇⊥h−∇⊥(h∆h+ 1

2 |∇h|2)
]

= ε (∇h · ∇∇⊥h−∇⊥h∆h)

= ε∇⊥h · ∇∇h . (4.30)

This coincides with Salmon’s (1985, equation 2.27) expression for the ageostrophic ve-
locity. We note that, at best, the ageostrophic velocity is of the same regularity class as
h; since the geostrophic velocity is a skew-gradient of h, the full inversion from h to u
therefore loses one derivative. Further, since (4.28) implies

(q − ε∆)h = 1 , (4.31)

and this equation is elliptic and positive so long as the initial potential vorticity is positive,
the full potential vorticity inversion gains one derivative—the functional setting is similar
to that of the two-dimensional incompressible Euler equations.

On the other hand, the L1 equations, involving variable coefficient elliptic equations,
are harder to implement numerically than two-dimensional ideal fluid equations. Salmon
(1985) therefore suggested to further approximate the system by applying a truncated
near-identity transformation to canonical coordinates. The Euler–Poincaré equations of
the resulting so-called large-scale semigeostrophic equations are

u = ∇⊥(
h+ ε h∆h+ 1

2 |∇h|2
)
, (4.32)

and the potential vorticity

q =
1
h
. (4.33)
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Since both L1 and LSG arise as special cases in our setting, we will not work through the
details of the construction. Equation (4.32) shows that the advecting velocity field is less
smooth than the advected quantity. As a consequence, standard arguments for proving
well-posedness of such equations fail, and numerical simulations indicate that the LSG
equations, though much simpler than the L1 equations, are indeed ill posed even for short
times. Unfortunately, ill-posedness extends to Salmon’s (1996) large scale semigeostrophic
dynamics for rotating stratified flow (Ford, private communication, 2000), and to Ford,
Malham & Oliver’s (2002) attempt to fix the indefiniteness of the LSG energy by adding
higher order terms.

5. The LSG hierarchy
In this section we apply the procedure outlined in Section 3 to the rotating shallow

water equations in semigeostrophic scaling. At first order in ε, we obtain a one-parameter
family of models that includes Salmon’s L1 and LSG equations, motivating the name
LSG hierarchy. We also carry the computation to second order, where we discuss models
with altogether five free parameters. The LSG hierarchy does not include the Hoskins
semigeostrophic equations, even though these equations are based on the same scaling.
We take up this issue in Section 7, where we present a different ansatz for the variational
asymptotics that yields the classical semigeostrophic equations.

We are motivated by the question whether Salmon’s idea of using truncated transfor-
mations into convenient coordinates can be generalized in a way that does not necessarily
lead to ill-posed models. The crucial observation is that we do not need to constrain the
dynamics explicitly—we can let consistent truncation to a certain asymptotic order do
all the work: If, by means of a clever choice of transformation, the truncated system
degenerates, constraints will appear naturally by the Dirac (1966) theory of constraints.
However, since all we require is a reduced set of equations, we need not compute any
constraints explicitly.

5.1. Setup
We follow the conventions introduced in Section 2.2, where uε denotes the velocity in
physical coordinates, and u the velocity in a new, yet-to-be-determined, coordinate sys-
tem. Correspondingly, hε denotes the layer depth in physical, and h the layer depth
in the new coordinate system. Then the full semigeostrophically scaled shallow water
Lagrangian reads

Lε =
∫ [

R ◦ ηε · η̇ε + 1
2 ε |η̇ε|2 − 1

2 hε ◦ ηε

]
da . (5.1)

Recall that the flow in each coordinate system has an associated vector field via

η̇ = u ◦ η , (5.2)
η̇ε = uε ◦ ηε , (5.3)

and that the change of coordinates is expressed by the transformation

ηε = ξε ◦ η . (5.4)

At this stage, the fundamental objects are still the flow maps η and ηε, and there is no
truncation to some order of ε yet. The crucial point is that we can regard ξε as a flow in
ε, and associate with it a vector field vε via

ξ′ε = vε ◦ ξε , (5.5)
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where ξ0 = id and the prime denotes a derivative with respect to ε.
This basic set-up is similar to, and has in fact been motivated by, the Lagrangian

averaging construction of Marsden & Shkoller (2001, 2003), which has recently been
extended to compressible fluids by Bhat et al. (2004). The difference is that in our case
there is no explicit averaging. Instead, we have the Rossby number as the natural physical
small parameter, and model reduction is achieved purely by shifting all non-degeneracy
into orders beyond those that are kept.

The task is now to systematically expand all quantities in the “old” Lagrangian Lε in
powers of ε. The computations are most easily written in terms of the Taylor coefficients
of the Eulerian vector fields uε and vε, which we denote by u, u′, u′′, etc. Appendix B
summarizes the relationship between Eulerian and Lagrangian expansion coefficients,
and gives the details of the expansion of each term in the Lagrangian. In this procedure,
v, v′, and their higher order cousins can be chosen by us, and we use this freedom to
impose degeneracy at each relevant order of the expansion.

A lengthy, but straightforward computation, the details of which are provided in Ap-
pendix B, yields the expansion

Lε = L0 + εL1 + 1
2 ε

2 L2 +O(ε3) (5.6)

where

L0 =
∫ [

R ◦ η · η̇ − 1
2 h ◦ η

]
da , (5.7)

L1 =
∫ [

v⊥ · u + 1
2 |u|

2 + 1
2 h∇ · v

]
◦ η da , (5.8)

L2 =
∫ [

u · (v′ + ∇v v)⊥ + (v⊥ + 2u) · (v̇ + ∇v u)

+ 1
2 h (∇ · v′ + v · ∇∇ · v − (∇ · v)2)

]
◦ η da . (5.9)

5.2. First order LSG models
We will now look at the first and second order contributions in turn, fixing v and v′ such
that L1 and L2, respectively, become affine. At first order, it is immediately clear that
any choice of the form

v = 1
2 u⊥ + F (h) (5.10)

will render L1 affine. For simplicity, we restrict ourselves to the one-parameter family of
transformations

v = 1
2 u⊥ + λ∇h . (5.11)

This restriction is motivated by the observation that under geostrophic balance, the
second order term is a scalar multiple of the first. Thus, when diagnosing the transfor-
mation with geostrophic balance, the factor ( 1

2 − λ) is scaling the transformation vector
field linearly to leading order.

With (5.11), the first order Lagrangian reads

L1 =
∫ [

λ∇⊥h · u + 1
4 h∇ · u⊥ + λ

2 h∆h
]
h dx

= (λ+ 1
2 )

∫
h∇⊥h · u dx− λ

∫
h |∇h|2 dx . (5.12)

We use the general Euler–Poincaré equations (4.14) to compute the equations of motion.
In the notation of Section 4.2,

F (h) = R + ε (λ+ 1
2 ) ∇⊥h , (5.13)
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g(h) = λ ε |∇h|2 − 1
2 h , (5.14)

so that, for some scalar function φ,

DF (h)φ = ε (λ+ 1
2 ) ∇⊥φ , (5.15)

Dg(h)φ = 2λ ε∇h · ∇φ− 1
2 φ , (5.16)

and, for some vector field w and scalar function ψ,

DF ∗(h) · w = −ε (λ+ 1
2 ) ∇⊥ · w , (5.17)

Dg∗(h)ψ = −2λ ε∇ · (ψ∇h)− 1
2 ψ . (5.18)

Therefore, the terms involving F of (4.14) read

∇(DF ∗(h) · (hu))− Ḟ − u⊥ ∇⊥ · F

= ε (λ+ 1
2 )

(
−∇∇⊥ · (hu) + ∇⊥∇ · (hu)− u⊥ ∇⊥ · ∇⊥h

)
− u⊥ ∇⊥ · R

= ε (λ+ 1
2 )

(
∆(hu⊥)− u⊥ ∆h

)
− u⊥

=
(
ε (λ+ 1

2 ) (h∆ + 2∇h · ∇)− 1
)
u⊥ . (5.19)

Similarly, the terms involving g are

∇(Dg∗(h)h+ ∇g) = −∇
(
2λ ε∇ · (h∇h) + 1

2 h− λ ε |∇h|2 + 1
2 h

)
= −∇

(
h+ λ ε (2h∆h+ |∇h|2)

)
. (5.20)

Equating (5.19) with (5.20), we obtain[
1− ε (λ+ 1

2 ) (h∆ + 2∇h · ∇)
]
u = ∇⊥[

h− ε λ (2h∆h+ |∇h|2)
]
. (5.21)

Moreover, (4.16) yields the potential vorticity

q =
1 + ε (λ+ 1

2 ) ∆h
h

. (5.22)

Here λ = − 1
2 corresponds to a complete loss of relative vorticity, while λ = 1

2 includes
relative vorticity with the same weight as for the parent dynamics in physical coordinates.

When λ > − 1
2 and provided h and q are positive and sufficiently smooth, equation

(5.21) is not only elliptic, but its weak formulation is also coercive in the (Sobolev)
space H1 of square integrable functions with square integrable first derivatives. This key
requisite for proving existence of unique weak solutions via the Lax–Milgram theorem
(see, e.g., Evans 1998) is shown as follows.

We say that u ∈ H1 solves the weak form of (5.21) if

B(u,v) =
∫

v · ∇⊥[
h− ε λ (2h∆h+ |∇h|2)

]
dx (5.23)

for every v ∈ H1, where

B(u,v) ≡
∫

v ·
[
1− σ(h∆ + 2∇h · ∇)

]
u dx . (5.24)

Then, after integration by parts,

B(u,u) =
∫ [

u · u + σ h∇u : ∇u− 1
2 σ∇h · ∇|u|2

]
dx

=
∫ [

1
2 (1 + hq) |u|2 + σ h |∇u|2

]
dx , (5.25)
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which defines a norm equivalent to the canonical H1 norm so long as hq > 1 and σh > 1,
uniformly on the plane. This is true, in particular, if h, q, and σ ≡ ε(λ+ 1

2 ) are positive
and h→ 1 as |x| → ∞.

We now consider three special choices for λ. When λ = 1
2 , the transformation is, a

posteriori, the identity up to terms of order ε2. The equations of motion in this case
is elliptic, coercive, and given by (4.27)—we have recovered Salmon’s L1 dynamics. In
other words, Salmon’s constraint to geostrophic balance has been replaced by choosing
a transform to an affine Lagrangian that is near identity to one order higher than gener-
ically expected for our ansatz. Whether the L1 model is also more accurate, perhaps
by one order as for the frequency of the linear toy problem in Section 3, remains to be
investigated.

When λ = − 1
2 , the function F which defines the symplectic structure becomes very

simple, namely F = R—the symplectic structure is canonical. This corresponds to the
case of Salmon’s LSG equations. However, the relation between h and u, equation (4.32),
ceases to be second order elliptic and, as mentioned previously, the resulting system of
equations is ill posed. In fact, due to the restriction on coercivity, none of the models
with λ ≤ −1

2 can be well posed.
Half way between L1 and LSG, when λ = 0, lies another special case. Here, both the

transformation (5.11) and the right side of the Euler–Poincaré equation (5.21) take the
simplest possible form, while the left side of (5.21) remains a coercive elliptic operator
with non-constant coefficients. I.e.,[

1− 1
2 ε (h∆ + 2∇h · ∇)

]
u = ∇⊥h , (5.26)

and the potential vorticity reads

q =
1 + 1

2 ε∆h
h

, (5.27)

so that

(q − 1
2 ε∆)h = 1 . (5.28)

The remarkable consequence is that now potential vorticity inversion “gains” three
derivatives, the maximum possible for first order models of this type. Two derivatives
are gained by inverting (5.28), and one derivative is gained through the inversion (5.26).

We conclude that the λ = 0 case resembles the regularity type of the two dimensional
Lagrangian averaged Euler equations; see Holm, Marsden & Ratiu (1998) and Holm
(1999) for a derivation, and Oliver & Shkoller (2001) for their analytical properties.
Although these equations are, in principle, as difficult to solve as the L1 equations, we
expect that the built-in non-dissipative smoothing will make the new model numerically
much better behaved.

5.3. Second order LSG models

The derivation of the second order transformation that yields an affine L2 Lagrangian is
substantially more involved, and therefore relegated to Appendix C.

Our ansatz identifies four more naturally occurring free parameters α, β, γ, and µ,
and yields

L2 = Ldeg
22 −

∫
h (u⊥ + ∇h) · v′free dx

=
∫
hu ·

[
(α+ λ2 − 1

2 ) ∇⊥h∆h+ (β − λ+ 1
4 )h∇⊥∆h
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+ (γ − 2λ+ 1) ∇⊥∇⊥h∇⊥h+ µh−1 ∇⊥h |∇h|2
]
dx−H2 , (5.29)

where

v′free = α∇h∆h+ β h∇∆h+ γ∇∇h∇h+ µh−1 ∇h |∇h|2 . (5.30)

and

H2 =
∫ [

(λ2 − β)h2 (∆h)2 + (λ2 + α− 2β − γ
2 )h |∇h|2∆h+ (µ− γ

2 ) |∇h|4
]
dx

=
∫
h

[
( 2
3 λ

2 − 1
3 α−

1
3 β + 1

6 γ)h (∆h)2

+ ( 1
3 λ

2 + 1
3 α−

2
3 β −

1
6 γ)h∇∇h : ∇∇h

+ (µ− 1
3 λ

2 − 1
3 α+ 2

3 β −
1
3 γ)h

−1 |∇h|4
]
dx . (5.31)

Our task is now to compute the equations of motion to second order, and to find “good”
choices for the parameters α, β, γ, λ, and µ. However, before resuming the computation,
we remark on two special choices that directly yield known models.

5.4. Second order L1 dynamics
When

α = 1
4 , β = 1

4 , γ = 0 , λ = 1
2 , µ = 0 , (5.32)

the L2 Lagrangian vanishes identically—the resulting dynamics in new coordinates is
still Salmon’s L1 dynamics. However, the corresponding near-identity transformation
back to “physical” coordinates has a non-vanishing generating vector field at second
order, namely

v′ = − 3
4 u̇− 3

4 ∇u u− 1
4 ∇u⊥ u⊥ + 1

4 ∇⊥∇hu + 1
4 ∇u⊥ ∇h

+ 1
4 h∆u⊥ + 1

4 ∇h∆h+ 1
4 h∇∆h , (5.33)

where we used identities (A 2), (A 3), and (A 4) to simplify the expression. We can now
solve Salmon’s L1 equation of motion and then obtain a second order a posteriori cor-
rection using (5.33).

5.5. Second order LSG
We take λ = − 1

2 as in Salmon’s LSG model and require that there is no contribution to
the potential vorticity at second order, i.e., the resulting symplectic structure is canonical.
This necessitates the choice

α = 1
4 , β = − 3

4 , γ = −2 , µ = 0 . (5.34)

Substitution into (5.29) then gives

−L2 = H2 =
∫
h2 ∇∇h : ∇∇h dx . (5.35)

This is precisely the L2 Lagrangian derived by Ford, Malham & Oliver (2002). In this ear-
lier work, we had directly followed Salmon’s procedure of first constraining to geostrophic
balance and later transforming—in this case up to second order—to canonical coordi-
nates. We then observed, as can also be seen from (5.35), that the second order contribu-
tion to the Hamiltonian is positive, which can be shown to render the entire Hamiltonian
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positive definite. Although this appears to stabilize the dynamics, the kinematic poten-
tial vorticity inversion yields advecting velocity fields that are insufficiently smooth to
generate a flow—both first and second order LSG are ill posed. This example nonethe-
less demonstrates that the formal steps of constraining and transforming up to a given
asymptotic order commute.

5.6. Second order Euler–Poincaré equations
We write the second order Lagrangian (5.29) in the form

L2 =
∫
hu ·

[
σ1 F 1 + σ2 F 2 + σ3 F 3 + σ4 F 4

]
dx−H2 , (5.36a)

H2 =
∫
h

[
ρ1 g1 + ρ2 g2 + ρ3 g3

]
dx , (5.36b)

where

F 1(h) = ∇⊥h∆h , (5.37a)

F 2(h) = h∇⊥∆h , (5.37b)

F 3(h) = ∇∇⊥h∇h , (5.37c)

F 4(h) = h−1 ∇⊥h |∇h|2 , (5.37d)

and

g1(h) = h (∆h)2 , (5.38a)
g2(h) = h∇∇h : ∇∇h , (5.38b)

g3(h) = h−1 |∇h|4 . (5.38c)

By direct calculation,

DF 1(h)φ = ∇⊥h∆φ+ ∇⊥φ∆h , (5.39a)

DF 2(h)φ = h∇⊥∆φ+ φ∇⊥∆h , (5.39b)

DF 3(h)φ = ∇∇⊥h∇φ+ ∇∇⊥φ∇h , (5.39c)

DF 4(h)φ = 2h−1 ∇⊥h∇h · ∇φ+ h−1 ∇⊥φ |∇h|2 − φh−2 ∇⊥h |∇h|2 , (5.39d)

and therefore

DF ∗
1(h) · w = ∆(w · ∇⊥h)−∇⊥ · (w ∆h) , (5.40a)

DF ∗
2(h) · w = ∆∇ · (hw⊥)−w⊥ · ∇∆h , (5.40b)

DF ∗
3(h) · w = ∇ · (∇∇hw⊥)−∇∇ : (∇h⊗w⊥) , (5.40c)

DF ∗
4(h) · w = ∇ · (2h−1 ∇hw⊥ · ∇h+ w⊥ h−1 |∇h|2) + h−2 w⊥ · ∇h |∇h|2 . (5.40d)

We can now plug these expressions into the respective terms of the Euler–Poincaré equa-
tion (4.14). For F 1, we obtain

S1 ≡ ∇(DF ∗
1(h) · (hu))−DF 1(h)ḣ− u⊥ ∇⊥ · F 1

= ∇∇ · (hu⊥ ∆h)−∇∆(hu⊥ · ∇h) + ∇⊥h∆∇ · (hu)

+ ∇⊥∇ · (hu) ∆h− u⊥ ∇⊥ · (∇⊥h∆h) . (5.41)

Similarly,

S2 ≡ ∇(DF ∗
2(h) · (hu))−DF 2(h)ḣ− u⊥ ∇⊥ · F 2
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= ∇∆∇ · (h2u⊥)−∇(hu⊥ · ∇∆h) + h∇⊥∆∇ · (hu)

+ ∇ · (hu) ∇⊥∆h− u⊥ ∇⊥ · (h∇⊥∆h) , (5.42)

and

S3 ≡ ∇(DF ∗
3(h) · (hu))−DF 3(h)ḣ− u⊥ ∇⊥ · F 3

= ∇∇ · (h∇∇hu⊥)−∇∇∇ : (h∇h⊗ u⊥) + ∇∇⊥h∇(∇ · (hu))

+ ∇∇⊥(∇ · (hu))∇h− u⊥ ∇⊥ · (∇∇⊥h∇h) . (5.43)

There is a similar expression for S4 which is not used in the following.
The corresponding computation for the “energy” terms yields

Dg1(h)φ = φ (∆h)2 + 2h∆h∆φ , (5.44a)
Dg2(h)φ = φ∇∇h : ∇∇h+ 2h∇∇h : ∇∇φ , (5.44b)

Dg3(h)φ = −h−2 φ |∇h|4 + 4h−1 |∇h|2 ∇h · ∇φ , (5.44c)

and

Dg∗1(h)ψ = ψ (∆h)2 + 2 ∆(hψ∆h) , (5.45a)
Dg∗2(h)ψ = ψ∇∇h : ∇∇h+ 2 ∇∇(hψ : ∇∇h) , (5.45b)

Dg∗3(h)ψ = −h−2 ψ |∇h|4 − 4 ∇(h−1 ψ∇h |∇h|2) . (5.45c)

The corresponding terms on the right of the Euler–Poincaré equation are

r1 ≡ ∇
(
Dg∗1(h)h+ g1

)
= 2∇

(
h (∆h)2 + ∆(h2 ∆h)

)
, (5.46)

r2 ≡ ∇
(
Dg∗2(h)h+ g2

)
= 2∇

(
h∇∇h : ∇∇h+ ∇∇ : (h2∇∇h)

)
, (5.47)

r3 ≡ ∇
(
Dg∗3(h)h+ g3

)
= ∇∇ · (∇h |∇h|2) . (5.48)

5.7. L2 dynamics

Since Salmon’s L1 dynamics is characterized by the transformation reducing to the iden-
tity up to terms of O(ε), it is natural to define an L2 dynamics by imposing that the
transformation reduces to the identity up to terms of O(ε2). In other words, we demand
that

vε ≡ v + εv′ = O(ε2) (5.49)

when the implicit u dependence of this expansion is expressed by a consistent diagnostic
relationship, which we derive in the following. Since

u = ∇⊥h+O(ε) , (5.50)

we must set, as for Salmon’s L1 dynamics, λ = 1
2 to remove O(1) terms from (5.49).

Inserting this choice and the diagnostic relationship (5.50) into the first order Euler–
Poincaré equation (4.27), we obtain the next order diagnostic relationship

u = ∇⊥h− ε
[
∇⊥(h∆h+ 1

2 |∇h|2)− h∆∇⊥h− 2 ∇h · ∇∇⊥h
]
+O(ε2)

= ∇⊥h− ε
[
∇∇⊥h∇h−∇⊥h∆h

]
+O(ε2) . (5.51)

Similarly, we diagnose

v′ = v′free − 3
4 ∇⊥ḣ+ 1

4 ∇∇h∇h+ ∇⊥∇⊥h∇h− 1
4 ∇h∆h− 1

4 h∇∆h+O(ε)

= v′free + 3
4∇h∆h−∇∇h∇h− 1

4 h∇∆h , (5.52)
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so that, altogether,

vε = v + εv′

= 1
2 (u⊥ + ∇h) + εv′

= ε
[
v′free + 5

4 ∇h∆h− 3
2 ∇∇h∇h− 1

4 h∇∆h
]
+O(ε2) . (5.53)

Thus, for this diagnostic relation to vanish at O(ε), we must require that

α = − 5
4 , β = 1

4 , γ = 3
2 , µ = 0 . (5.54)

The corresponding coefficients for the second order contributions to F are

σ1 = − 3
2 , σ2 = 0 , σ3 = 3

2 , σ4 = 0 , (5.55)

and therefore the full second order contribution to F reads
3
2

(
−∇⊥h∆h+ ∇⊥∇⊥h∇⊥h

)
= − 3

2 ∇∇h∇⊥h . (5.56)

The full L2 potential vorticity is thus given by

q =
∇⊥ · F

h
=

1 + ε∆h− 3
2 ε

2 ∇∇h : ∇⊥∇⊥h

h
=

1 + ε∆h− 3 ε2 det Hessh
h

, (5.57)

where the numerator is a second order elliptic Monge–Ampère operator; see Lychagin,
Rubtsov & Chekalov (1993).

The second order contributions to the left side of the Euler–Poincaré equation (4.14)
are

3
2 ∇∇ · (∇⊥u ∇h2)− 3 ∇∇h∇⊥(∇ · (hu)) + 3

2 u⊥ ∇∇h : ∇⊥∇⊥h . (5.58)

Similarly, we find that the coefficients corresponding to the components of the H2

Hamiltonian (5.36b) are
ρ1 = 3

4 , ρ2 = − 3
4 , ρ3 = 0 , (5.59)

so that the second order contributions to the right side of the Euler–Poincaré equation
(4.14) are

− 3
2 ∇

[
h∇∇h : ∇⊥∇⊥h+ ∇∇ : (h2 ∇⊥∇⊥h)

]
. (5.60)

Unfortunately, the resulting equation for u in terms of h is third order, not elliptic,
and cannot be written as an operator solely acting on u⊥. The natural generalization,
in our framework, of the L1 setting therefore does not appear to yield a useful model.
However, if we are prepared to make further approximations, consistent with the order
of the model, we might be able to remove all of the “bad” terms on the likely expense of
losing the Hamiltonian structure.

5.8. Order limitations
We now ask more generally what order of potential vorticity inversion can be expected
from an optimal choice of parameters. There are three competing considerations: the
order of differentiation on the right of the Euler–Poincaré equation, ellipticity and reg-
ularity of the operator on the left of the Euler–Poincaré equation, and ellipticity and
regularity of the q-h inversion.

Since the left side of the Euler–Poincaré equation and the q-h inversion are each forth
order at best, improving on the third order regularity of potential vorticity inversion of
the first order model with λ = 0 requires that the right of the Euler–Poincaré equation
does not contain derivatives of the maximum order five. These terms come from the
symmetric second order term in the H2 Hamiltonian (5.31). We must hence require its
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coefficient to vanish, i.e. β = λ2 or, in the notation of Section 5.6, ρ1 + ρ2 = 0. However,
this choice immediately implies that σ2 = (λ− 1

2 )2 ≥ 0. We note that σ2 is the coefficient
multiplying S2 on the left of the Euler–Poincaré equation, which contains all possible
fourth order terms on u. Dropping all lower order contributions, these terms are

σ2 h
2
(
∆∇∇ · u⊥ + ∆∇⊥∇ · u

)
= σ2 h

2 ∆2u⊥ . (5.61)

After being left-multiplied by J, this expression enters the Euler–Poincaré equations with
a negative sign, causing the combined operator to lose positivity unless σ2 = 0. In the
latter case, however, the operator on the left can be elliptic of order two at best, and the
q-h inversion can also not reach maximal order.

We conclude that none of the second order models will be able to exceed the degree of
smoothness afforded by the most regular first order model. However, this does not mean
second order models cannot be accurate—this question is entirely open to investigation.
Moreover, when splitting off the ageostrophic velocity component, cancellations of higher
order terms similar to those in (4.30) occur provided that

β = 2λ2 − λ+ 1
4 , (5.62)

with the possibility that the ageostrophic velocity may be smoother than the overall
velocity field. Moreover, further approximation may also result in second order accurate
as well as regular models.

6. The quasigeostrophic hierarchy
The shallow water Lagrangian in quasigeostrophic scaling is

Lε =
∫ [

R ◦ ηε · η̇ε + 1
2 ε |η̇ε|2 − 1

2 ε
−1 hε ◦ ηε

]
da . (6.1)

If we expand the quasigeostrophic Lagrangian in powers of ε, the term at O(ε−1) reads

L−1 = − 1
2

∫
h ◦ η da . (6.2)

Taking arbitrary variations on any finite subdomain forces h = 1, i.e. the flow is in-
compressible. We now seek new coordinates in which h = 1 to all orders. Thus, the
transformation cannot be area preserving, and we will be able to recover the weakly
compressible effects of the parent dynamics by changing back into physical coordinates
a posteriori. Thus, for a model in the quasigeostrophic hierarchy the continuity equa-
tion will always be trivial, while the momentum equation, once higher order terms are
included, remains prognostic. This should be contrasted with the approach taken in the
LSG hierarchy, where the leading order defining feature is that the Lagrangian is affine.
This feature of the leading order was then imposed on the higher order Lagrangians,
resulting in kinematic relationship between h and u, while the continuity equation re-
mained a prognostic equation. In each case the shallow water system is reduced to a
single prognostic equation.

Once incompressibility is imposed, the L−1 contribution can be normalized out. Col-
lecting terms at the remaining orders gives

Lε = L0 + εL1 + 1
2 ε

2 L2 +O(ε3) , (6.3)

with

L0 =
∫ [

R ◦ η · η̇ + 1
2 (h∇ · v) ◦ η

]
da , (6.4)
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L1 =
∫ [

v⊥ · u + 1
2 |u|

2 + 1
4 h (∇ · v′ + v · ∇∇ · v − (∇ · v)2)

]
◦ η da , (6.5)

L2 =
∫ [

u · (v′ + ∇v v)⊥ + (v⊥ + 2u) · (v̇ + ∇v u)

+ 1
6 h

(
∇ · v′′ + 2 v · ∇∇ · v′ + v′ · ∇∇ · v − 3 ∇ · v ∇ · v′

+ v · ∇(v · ∇∇ · v)− 3 ∇ · v v · ∇∇ · v + (∇ · v)3
)]
◦ η da . (6.6)

Incompressibility also allows us to considerably simplify the expanded Lagrangians.
Changing to Eulerian variables, eliminating perfect derivatives, and integrating by parts
in various terms, we find

L0 =
∫

R · u dx , (6.7)

L1 =
∫ [

v⊥ · u + 1
2 |u|

2 − 1
2 (∇ · v)2

]
dx , (6.8)

L2 =
∫ [

u · (v′ + ∇v v)⊥ + (v⊥ + 2u) · (v̇ + ∇v u)−∇ · v ∇ · v′ + 1
2 (∇ · v)3

]
dx

=
∫ [

(∇∇ · v − u⊥) · v′ + 2 u · ∇v u + u · v⊥ ∇ · v + 1
2 (∇ · v)3

]
dx , (6.9)

where, in the last equality, we have used identity (A 7).
Variations of the L0 Lagrangian (6.7) simply confirm that u is divergence free. We also

note that the quasigeostrophic scaling has v appear at O(1)—the change of variables is
no longer small. In the variational principle, however, this contribution is lost as a result
of imposing incompressibility, and consequently leading order geostrophic balance is lost.

In the next section, we show that geostrophic balance can be restored through condi-
tions on v, v′, etc. from independent considerations.

6.1. Balance conditions
We first note that hε satisfies a continuity equation with respect to the change of variables,

h′ε + ∇ · (hεvε) = 0 , (6.10)

as a direct consequence of the definitions for hε and vε. Differentiating (6.10) and setting
ε = 0, we obtain

h′ + ∇ · v = 0 , (6.11)
h′′ + ∇ · v′ −∇ · (v ∇ · v) = 0 , (6.12)

where once more we have used that h = 1 in the quasigeostrophic scaling. Similarly,
noting that η̇ε = uε ◦ ηε and η′ε = vε ◦ ηε, we find by cross-differentiation that

u′ + ∇u v = v̇ + ∇v u . (6.13)

We now substitute the power series expansions

uε = u + εu′ +O(ε2) , (6.14)

hε = 1 + ε h′ + 1
2 ε

2 h′′ +O(ε3) (6.15)

into the quasigeostrophically rescaled shallow water equations and collect terms at each
power of ε. At order ε0, we find

u = ∇⊥h′ = −∇⊥∇ · v , (6.16)
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or

v = −∇∆−2∇⊥ · u . (6.17)

At order ε, the balance condition is

u̇ + ∇u u + u′⊥ + 1
2 ∇h′′ = 0 . (6.18)

We eliminate u′ and h′′ via (6.13) and (6.12), respectively, whence

u̇ + ∇u u + (v̇ + ∇v u−∇u v)⊥ − 1
2 ∇∇ · v′ + 1

2 ∇∇ · (v ∇ · v) = 0 . (6.19)

The divergence of this expression then yields
1
2 ∆∇ · v′ = ∇u : ∇uT + ∇v⊥ : ∇uT −∇u⊥ : ∇vT + v · ∇∇⊥ · u + 1

2 ∆∇ · (v ∇ · v) .
(6.20)

We remark that a first order balance condition can also be derived variationally. Take, for
example, arbitrary variations of the full compressible L0 Lagrangian (6.4) with v fixed.
The resulting condition reduces to (6.16) for h = 1.

6.2. First order quasigeostrophy
Collecting terms to first order, the truncated Lagrangian reads

L =
∫ [

R · u + ε (v⊥ · u + 1
2 |u|

2 − 1
2 (∇ · v)2)

]
dx . (6.21)

Since u is divergence free in the new coordinates, it is convenient to set u = ∇⊥ψ for
some stream function ψ. Similarly, noting that only the curl-free part of v contributes to
the Lagrangian, we set v = ∇φ. In this notation,

L =
∫ [

R · ∇⊥ψ + ε (∇φ · ∇ψ + 1
2 |∇ψ|2 − 1

2 (∆φ)2)
]
dx . (6.22)

The leading order balance condition (6.17) implies φ = −∆−1ψ, so that

L =
∫ [

R · ∇⊥ψ + ε (−∇∆−1ψ · ∇ψ + 1
2 |∇ψ|2 − 1

2 ψ
2)

]
dx

=
∫ (

R + 1
2 ε (u−∆−1u)

)
· u dx , (6.23)

and the potential vorticity equation reads

(∂t + u · ∇)
(
1 + ε∇⊥ · (u−∆−1u)

)
= 0 , (6.24)

or

(∂t + ∇⊥ψ · ∇) (∆ψ − ψ) = 0 . (6.25)

We have thus recovered the classical quasigeostrophic potential vorticity equation (2.33).
The variational formulation (6.23) has already been noted by Holm & Zeitlin (1998), but
we believe that the constructive derivation is new.

We remark that the balance condition (6.16) is crucial to derive a meaningful model
for rotating shallow water. Choosing φ = ψ, for example, yields the Lagrangian

L =
∫ [

R · ∇⊥ψ + ε (∇ψ · ∇ψ + 1
2 |∇ψ|2 − 1

2 (∆ψ)2)
]
dx

=
∫ (

R + ε ( 3
2 u− 1

2 ∆u
)

· u dx , (6.26)
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and the resulting potential vorticity equation reads

(∂t + ∇⊥ψ · ∇) ∆(ψ − 1
3 ∆ψ) = 0 . (6.27)

This corresponds to the Lagrangian averaged Euler equations with α2 = 1
3 , see Holm,

Marsden & Ratiu (1998), Oliver & Shkoller (2001), and references cited therein, which
even at leading order describe entirely different physics.

6.3. Second order quasigeostrophy

To obtain the second order of the quasigeostrophic hierarchy, we first substitute the
leading order balance condition into the second order quasigeostrophic Lagrangian (6.9).
It is most convenient to work in terms of v rather than u, so that we use the balance
condition in the form (6.16), and obtain

L2 =
∫ [

2 u · ∇v u−∇ · v v⊥ · ∇⊥∇ · v + 1
2 (∇ · v)3

]
dx

=
∫ [

2 u⊗ u : ∇v + (∇ · v)3
]
dx . (6.28)

The contribution involving v′ has dropped entirely from the Lagrangian—we need the
second order balance condition only for the transformation back into the old coordinate
system.

To derive the potential vorticity at order ε2, it is easiest to directly take variations of
(6.28), which are again subject to the Lin constraint (4.3). Since v is curl free, the matrix
∇v is symmetric, so that

δL2 =
∫ [

4 δu⊗ u : ∇v + 2 u⊗ u : ∇δv + 3 (∇ · v)2 ∇ · δv
]
dx

=
∫ [

4 δu · ∇v u− 2 u⊗ u : ∇∇∆−2∇⊥ · δu− 3 (∇ · v)2 ∆−1∇⊥ · δu
]
dx

=
∫
δu ·

[
4 ∇v u + 2 ∇⊥∆−2(∇u : ∇uT ) + 3 ∇⊥∆−1(∇ · v)2

]
dx

≡
∫
δu · F 2 dx . (6.29)

Note that we used the leading order balance condition (6.17) to substitute for δv in the
second step, and integrated by parts in the third. Hence, the order ε2 contribution to the
potential vorticity ∇⊥ · F ε, where

F ε = F 0 + εF 1 + 1
2 ε

2 F 2 , (6.30)

must be

∇⊥ · F 2 = 4∇v : (∇⊥u)T + 2 ∆−1(∇u : ∇uT ) + 3 (∇ · v)2 . (6.31)

Using that u = ∇⊥ψ and v = −∇∆−1ψ, we can also write

∇⊥ · F 2 = 3ψ2 − 4 ∇⊥∇⊥ψ : ∇∇∆−1ψ − 2 ∆−1(∇⊥∇⊥ψ : ∇∇ψ) . (6.32)

We see that potential vorticity inversion is now nonlinear, but its regularity cannot be
of higher order than that of the standard quasigeostrophic model. Since the operator is
not obviously elliptic, well-posedness of the second order model remains open.

We note that there are no obvious free parameters in the quasigeostrophic hierarchy,
even for models beyond order two.
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7. The semigeostrophic hierarchy
We finally seek to identify the Hoskins semigeostrophic equations and higher order gen-

eralizations thereof within our variational framework. It may see natural to conjecture
that the semigeostrophic equations in physical coordinates—before the Hoskins trans-
formation is applied—can be recovered as a particular case of the second order LSG
hierarchy. (In fact, this conjecture provided the initial motivation for going to second
order in Section 5.) It turns out, however, that this is not the case, as can be seen by the
following argument.

The semigeostrophic potential vorticity in physical coordinates, given by (2.26), can
be recovered from our general L2 Lagrangian (5.29) by the unique choice of parameters

α = 3
4 , β = 1

4 , γ = − 1
2 , µ = 0 , (7.1)

which determines the associated Hamiltonian completely. In particular, the second order
contribution to Hε reads

H2 = 1
4

∫ [
3h |∇h|2 ∆h+ |∇h|4

]
dx . (7.2)

This Hamiltonian is not even sign definite, and clearly differs from the semigeostrophic
Hamiltonian (2.28). Thus, classical semigeostrophy cannot arise as a second order LSG
model in the sense of Section 5. (Changing procedure, however, and imposing different
constraints on the symplectic structure and on the Hamiltonian, we can indeed derive
the semigeostrophic equations as has been noted by McIntyre and Roulstone, 2002.)

On the other hand, there are two key features of semigeostrophy written in Hoskins
coordinates that we can replicate in our transformational approach. First, the symplectic
structure is canonical, so that the potential vorticity is q = 1/h. Second, the transformed
velocity equals the geostrophic velocity in old coordinates. In the following, we show
that these two conditions can be applied at any order of the asymptotics. The challenge,
however, is closing the equations in transformed coordinates beyond order two.

7.1. General setting
The key observation—implicit, for example, in Appendix B of Salmon (1985)—is that

δ

∫
h2

ε dx = 2
∫
hε δhε dx = −2

∫
hε ∇ · (hεwε) dx = 2

∫
hε wε · ∇hε dx , (7.3)

which, in Lagrangian coordinates, reads

δ

∫
hε ◦ ηε da = 2

∫
(∇hε) ◦ ηε · δηε da . (7.4)

We now impose that the velocity in new coordinates equals the old geostrophic velocity,

u = ∇⊥hε ◦ ξε , (7.5)

and therefore

δ

∫
hε ◦ ηε da ≡ 2

∫
u ◦ η · δη⊥ε da . (7.6)

Hence, we proceed as follows. We take the variation of the full non-transformed action
and apply (7.6). Only then do we expand all terms in powers of ε. We finally impose
canonical coordinates by choosing η′, η′′, etc. such that the variation of the action, when
truncated to consistent order, is of the form

δS = −
∫∫

η̇⊥ · δη da dt−
∫∫

F ε · δη da dt . (7.7)
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The first term in this expression guarantees canonicity. The resulting Euler–Lagrange
equations, in connection with (7.5), then tell us that

F ε = ∇hε ◦ ηε . (7.8)

The variation of each term in the action corresponding to the semigeostrophically
scaled Lagrangian (5.1) are

δ

∫∫
R ◦ ηε · η̇ε da dt =

∫∫
η̇ε · δη⊥ε da dt

=
∫∫ [

η̇ · δη⊥ + ε (η̇′ · δη⊥ + η̇ · δη′⊥)

+ ε2 ( 1
2 η̇′′ · δη⊥ + η̇′ · δη′⊥ + 1

2 η̇ · δη′′⊥)
]
da dt+O(ε3) , (7.9)

where, in the first equality, we have used identities similar to those applied in (B 15).
Next,

1
2 ε δ

∫∫
|η̇ε|2 da dt = −ε

∫∫
η̈⊥ε · δη⊥ε da dt

= −
∫∫ [

ε η̈⊥ · δη⊥ + ε2 (η̈′⊥ · δη⊥ + η̈⊥ · δη′⊥)
]
da dt+O(ε3) , (7.10)

and, using (7.6),

− 1
2 δ

∫∫
hε ◦ ηε da dt = −

∫∫
u ◦ η ·

[
δη⊥ + ε δη′

⊥ + 1
2 ε

2 δη′′
⊥]

da dt+O(ε3) (7.11)

7.2. First order semigeostrophy
We now look at each order in the variation of the action in turn. At leading order, we
recover our ansatz, since

δS0 =
∫∫ (

η̇ − u ◦ η
)

· δη⊥ da dt = 0 . (7.12)

At the next order,

δS1 =
∫∫ [

(η̇′ − η̈⊥) · δη⊥ + (η̇ − u ◦ η) · δη′⊥
]
da dt ≡ 0 . (7.13)

Therefore, we need to impose that

η̇ + η′
⊥ = 0 . (7.14)

Since, up to first order,
ξε ◦ η = ηε = η + εη′ , (7.15)

substituting (7.14) into this expression yields the classical Hoskins transformation

ξε = id +εu⊥ . (7.16)

Thus, we have recovered the semigeostrophic equations without imposing the geostrophic
momentum approximation, but simply by systematically truncating the Hoskins trans-
formed variation of the action at first order. In other words, while Hoskins (1975) com-
bined an exact transformation with an independently motivated approximation, our ap-
proximation lies entirely with the truncation of the transformation. With the conservation
laws already contained in our ansatz, the non-obvious and perhaps surprising aspect of
the semigeostrophic equations is that they can be closed in the new, semigeostrophic
coordinates as explained in Section 2.3.
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7.3. Higher order semigeostrophy
At second order, we have

δS2 =
∫∫ [

( 1
2 η̇′′− η̈′⊥) ·δη⊥+(η̇′− η̈⊥) ·δη′⊥+ 1

2 (η̇−u◦η) ·δη′′⊥
]
da dt ≡ 0 , (7.17)

where, as before, only the term multiplying δη yields new information, and we find that
1
2 η′′ − η̇′⊥ = 0 (7.18)

and therefore
1
2 η′′ + η̈ = 0 . (7.19)

The corresponding second order transformation reads

ξε = id + εu⊥ + ε2 (u̇ + u · ∇u) . (7.20)

Continuing this way, we find that

ξε ◦ η = ηε = η + ε η̇⊥ − ε2 η̈ − ε3
...
η⊥ + ε4 η(4) + . . . (7.21)

We notice that t-derivatives of u start to appear, so that potential vorticity inversion is
non-local in time, and cannot be done in any obvious way for models of order two or
higher.

However, if we are prepared to make further approximations which potentially destroy
the Hamiltonian structure, the equations can at least formally be closed. In particular,
at second order we can remove the time derivative by noting that

u̇ = ∇⊥ḣ+O(ε) = O(ε) . (7.22)

However, at this level of approximation the resulting system is not elliptic. Thus, although
the generalized Hoskins transformation (7.21) has a very simple structure, it is not clear
whether the corresponding models are useful or even well posed.

8. Discussion and outlook
We introduced a unified framework in which the classical balance models as well as

new ones—of the same formal order of accuracy—can be derived by consistently trun-
cating a near-identity change of coordinates in the variational formulation of the rotating
shallow water equations. Model reduction is achieved by imposing either degeneracy or
incompressibility on the truncated expansion of the Lagrangian.

This approach has a number of advantages.
• Since all approximations are interpreted as arising through a change of coordinates,

we have a formalism for a posteriori next order correction of numerically computed
solutions.
• We have derived several new models, at least one of which has promising analytical

properties.
• The unified formulation provides a framework for computational benchmarking of

the different models against the full shallow water parent model.
Future work may take a number of different directions, in particular the following.
• Inclusion of bottom topography, stratification, boundary conditions, and spatial vari-

ations in the Coriolis parameter.
• Can more general choices than (5.11) for the first order transformation yield inter-

esting models or connections with more classical Hamiltonian approximation theory?
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• Investigation of the well-posedness of the reduced models and analytical estimates
of the modeling error.
• Numerical benchmarking of the different models.
• Investigation of connections to Lagrangian averaging, cf. Holm (1999), Marsden &

Shkoller (2003).
• Investigation of connections between our quasigeostrophic hierarchy and the theory

of nearly incompressible flow.
• Systematic study of more interesting finite dimensional models than the simple toy

presented here.

Appendix A. Useful identities
For arbitrary, sufficiently smooth functions f , g, and h, and an arbitrary vector field

u, the following identities hold:

∇⊥gu · ∇f −∇f u · ∇⊥g = u⊥ ∇f · ∇g , (A 1)

∇∇ · u⊥ + ∇⊥∇ · u = ∆u⊥ , (A 2)

∇h∇ · u⊥ + (∇⊥u)T ∇h = ∇h · ∇u⊥ , (A 3)

∇⊥h∇ · u + (∇u⊥)T ∇h = ∇h · ∇u⊥ , (A 4)

Further, with

I =
(

1 0
0 1

)
and J =

(
0 −1
1 0

)
, (A 5)

so that Ju = u⊥,

∇u− (∇u)T = J ∇⊥ · u , (A 6)

∇⊥u⊥ + (∇u)T = I∇ · u . (A 7)

Equations (A 6) and (A 7) imply that

∇∇⊥h−∇⊥∇h = ∆h J , (A 8)

∇∇h+ ∇⊥∇⊥h = ∆h I , (A 9)

and therefore, in particular,

∇∇⊥h∇h+ ∇∇h∇⊥h = ∇⊥h∆h . (A 10)

All identities can easily be verified by direct calculation.

Appendix B. Details of the Expansion
The expansions of each term in the shallow water Lagrangian is most easily written in

terms of the Eulerian vector fields u and v. Thus, we first establish relationships between
derivatives of the diffeomorphisms ηε and ξε, and the corresponding vector fields u and
v. Differentiating ξ′ε = vε ◦ ξε with respect to t and ε, respectively, gives

ξ̇
′
ε = v̇ε ◦ ξε + (∇vε) ◦ ξε ξ̇ε , (B 1)

ξ′′ε = v′ε ◦ ξε + (∇vε) ◦ ξε ξ′ε . (B 2)

Setting ε = 0 and using that, by definition, ξ ≡ ξ0 = id and therefore ξ̇ = 0, we obtain

ξ′ = v , (B 3)
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ξ̇
′
= v̇ , (B 4)

ξ′′ = v′ + ∇v v . (B 5)

(Quantities without subscript are taken to be evaluated at ε = 0.) Similarly, successive
differentiation of ηε = ξε ◦ η gives

η′ε = ξ′ε ◦ η , (B 6)
η′′ε = ξ′′ε ◦ η , (B 7)

η̇′ε = ξ̇
′
ε ◦ η + (∇ξ′ε) ◦ η η̇ , (B 8)

whence, setting ε = 0,

η′ = v ◦ η , (B 9)
η′′ = (v′ + ∇v v) ◦ η , (B 10)
η̇′ = (v̇ + ∇v u) ◦ η . (B 11)

We now look each term of the rotating shallow water Lagrangian separately. First,
consider the Coriolis term. Since f is constant, second derivatives of R vanish, and a
straightforward Taylor expansion of R ◦ ηε about ε = 0 gives

R ◦ ηε = R ◦ η + ε (∇R) ◦ η η′ + 1
2 ε

2 (∇R) ◦ η η′′ +O(ε3) . (B 12)

Thus,

R ◦ ηε · η̇ε = R ◦ η · η̇ + ε (∇R) ◦ η η′ · η̇ + εR ◦ η · η̇′

+ 1
2 ε

2 R ◦ η · η̇′′ + 1
2 ε

2 (∇R) ◦ η η′′ · η̇ + ε2 (∇R) ◦ η η′ · η̇′ +O(ε3) . (B 13)

We can pull out of this expression some full time derivatives which do not contribute to
the variational principle. For any vector w,

∂t(R ◦ η · w) = (∇R)T ◦ η w · η̇ + R ◦ η · ẇ , (B 14)

so that

R ◦ η · ẇ + (∇R) ◦ η w · η̇ =
(
∇R− (∇R)T

)
◦ η w · η̇ + ∂t(R ◦ η · w)

= w⊥ · η̇ + ∂t(R ◦ η · w) . (B 15)

Similarly, we compute, again under the assumption that f is constant (when f is arbi-
trary, the additional terms that arise do not combine in the same way),

∂t

(
(∇R) ◦ η η′ · η′

)
= (∇R)T ◦ η η′ · η̇′ + (∇R) ◦ η η′ · η̇′ , (B 16)

so that

(∇R) ◦ η η′ · η̇′ = 1
2

(
∇R− (∇R)T

)
◦ η η′ · η̇′ + 1

2 ∂t

(
(∇R) ◦ η η′ · η′

)
= 1

2 η′
⊥ · η̇′ + 1

2 ∂t

(
(∇R) ◦ η η′ · η′

)
. (B 17)

We now apply (B 15) with w = η′ and w = η′′ respectively, and (B 17) to rewrite (B 13)
as follows:

R ◦ ηε · η̇ε = R ◦ η · η̇ + εη′
⊥ · η̇ + ε ∂t(R ◦ η · η′) + 1

2 ε
2 η′′

⊥ · η̇

+ 1
2 ε

2 ∂t(R ◦ η · η′′) + 1
2 ε

2 η′
⊥ · η̇′ + 1

2 ε
2 ∂t

(
(∇R) ◦ η η′ · η′

)
+O(ε3)

=
[
R · u + εu · v⊥ + 1

2 ε
2
(
u · (v′ + ∇v v)⊥ + v⊥ · (v̇ + ∇v u)

)]
◦ η

+O(ε3) + Ḟ , (B 18)
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where Ḟ is a total time derivative which does not contribute to the variational principle,
and will be dropped hereinafter.

Next, the kinetic energy can be expanded directly,

1
2 ε |η̇ε|2 = 1

2 ε |η̇ + ε η̇′ +O(ε2)|2

= 1
2 ε |η̇|

2 + ε2 η̇ · η̇′ +O(ε3)

=
[
1
2 ε |u|

2 + ε2 u · (v̇ + ∇v u)
]
◦ η +O(ε3) , (B 19)

where we have used identity (B 11) to substitute for η̇′.
Finally, the potential energy term is expanded by noting that (5.4) and (5.5) combine

to η′ε = vε ◦ ηε. Setting Jε ≡ h−1
ε ◦ ηε, the Liouville theorem for the flow of vε reads

J ′ε = (∇ · vε) ◦ ηε Jε . (B 20)

After differentiating with respect to ε, setting ε = 0 yields the relations

J ′ = (∇ · v) ◦ η J

≡ σ1 J , (B 21)

J ′′ =
[
∇ · v′ + v · ∇∇ · v + (∇ · v)2

]
◦ η J

≡ σ2 J , (B 22)

J ′′′ =
[
∇ · v′′ + 2 v · ∇∇ · v′ + v′ · ∇∇ · v + 3 ∇ · v ∇ · v′

+ v · ∇(v · ∇∇ · v) + 3 ∇ · v v · ∇∇ · v + (∇ · v)3
]
◦ η J

≡ σ3 J . (B 23)

The power series

Jε = J
[
1 + σ1 ε+ 1

2 σ2 ε
2 + 1

6 σ3 ε
3 +O(ε4)

]
(B 24)

is easily inverted. Setting J−1 ≡ h ◦ η, we find

hε ◦ ηε = J−1
ε

= J−1
[
1− σ1 ε+ (σ2

1 − 1
2 σ2) ε2 − (σ3

1 − σ1 σ2 + 1
6 σ3) ε3 +O(ε4)

]
= h ◦ η

[
1− ε∇ · v − 1

2 ε
2
(
∇ · v′ + v · ∇∇ · v − (∇ · v)2

)
− 1

6 ε
3
(
∇ · v′′ + 2 v · ∇∇ · v′ + v′ · ∇∇ · v − 3 ∇ · v ∇ · v′

+ v · ∇(v · ∇∇ · v)− 3 ∇ · v v · ∇∇ · v + (∇ · v)3
)

+O(ε4)
]
◦ η . (B 25)

Appendix C. Derivation of the second order LSG transformation
The identification of transformation which renders the L2 Lagrangian (5.9) affine re-

quires some preparatory work. There are three distinct groups of terms which we consider
separately—terms involving v′, terms involving v̇, and all others:

L21 =
∫
h

(
u · v′

⊥ + 1
2 h∇ · v′

)
dx ,

L221 =
∫
h (v⊥ + 2u) · v̇ dx ,

L222 =
∫
h

[
u · ∇v⊥ v + (v⊥ + 2u) · ∇v u + 1

2 h (v · ∇∇ · v − (∇ · v)2)
]
dx . (C 1)



34 M. Oliver

First, using integration by parts, we can write

L21 = −
∫
h (u⊥ + ∇h) · v′ dx . (C 2)

The other terms involve v, so that we must insert our first order ansatz (5.11). We begin
by computing

L221 =
∫
h

[
( 3
2 u + λ∇⊥h) · ( 1

2 u̇⊥ + λ∇ḣ)
]
dx

=
∫
h

[
( 3
4 u + λ

2 ∇⊥h) · (u̇⊥ + ∇ḣ+ (2λ− 1) ∇ḣ)
]
dx

=
∫
h

[
3
4 u · (u̇⊥ + ∇ḣ) + λ

2 ∇h · u̇ + ( 3
2λ−

3
4 ) u · ∇ḣ

]
dx

=
∫ [
− 3

4 h u̇ · (u⊥ + ∇h)− ( 3
4 + λ

2 ) ḣu · ∇h− ( 3
4 − λ)hu · ∇ḣ

]
dx

=
∫ [
− 3

4 h u̇ · (u⊥ + ∇h) + ( 3
4 + λ

2 ) (u · ∇h)2 + ( 3
4 + λ

2 )hu · ∇h∇ · u

+ ( 3
4 − λ)hu · ∇(u · ∇h) + ( 3

4 − λ)hu · ∇(h∇ · u)
]
dx

=
∫
h

[
− 3

4 u̇ · (u⊥ + ∇h) + u ·
(
− 3

2 λ (∇u)T ∇h− 3
2 λ∇∇hu

+ ( 3
4 − λ) ∇h∇ · u + ( 3

4 − λ)h∇∇ · u
)]

dx (C 3)

where, in the second to last step, we have used the continuity equation to eliminate time
derivatives of h. In the final step we have used integration by parts on the integral of
(u · ∇h)2. The above computation already outlines our general strategy: Our goal is
to eventually factor out h (u⊥ + ∇h) from all expressions—this is completed now for
the u̇-term. For the remaining terms, we must first factor out hu, and then iteratively
complete to the full h (u⊥ + ∇h), starting from the terms that are cubic in u.

To start this procedure for L222, we substitute in the expression for v and expand:

L222 =
∫
h

[(
− 1

4 u · ∇u u⊥ + 3
4 u · ∇u⊥ u

)
+

(
λ
2 u · ∇∇⊥hu⊥ − λ

2 u · ∇u ∇h+ 3
2 λu · ∇∇hu + λ

2 ∇h · ∇u u

+ 1
8 hu⊥ · ∇∇ · u⊥ − 1

8 h (∇ · u⊥)2
)

+
(
λ2 ∆hu · ∇⊥h+ λ

4 hu⊥ · ∇∆h+ λ
4 h∇h · ∇∇ · u⊥ − λ

2 h∆h∇ · u⊥)
+

(
1
2 λ

2 h∇h · ∇∆h− 1
2 λ

2 h (∆h)2
)]

dx . (C 4)

The simplification in the third group of terms is based on identity (A 10). We must
further integrate by parts on the term∫

h2 (∇ · u⊥)2 dx = −
∫
h

[
hu⊥ · ∇∇ · u⊥ + 2 u⊥ · ∇h∇ · u⊥]

dx . (C 5)
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We then set L22 = L221 + L222 and combine terms:

L22 =
∫
h

[
(u⊥ + ∇h) · (− 3

4 u̇) + u ·
(

3
4 ∇u⊥ u− 1

4 ∇u u⊥)
+ u ·

(
λ
2 ∇∇⊥hu⊥ − λ

2 ∇u ∇h− λ (∇u)T ∇h+ ( 3
4 − λ) ∇h∇ · u

+ ( 3
4 − λ)h∇∇ · u− 1

4 h∇⊥∇ · u⊥ − 1
4 ∇⊥h∇ · u⊥)

+
(
λ2 ∆hu · ∇⊥h+ λ

4 hu⊥ · ∇∆h+ λ
4 h∇h · ∇∇ · u⊥ − λ

2 h∆h∇ · u⊥)
+

(
1
2 λ

2 h∇h · ∇∆h− 1
2 λ

2 h (∆h)2
)]

dx . (C 6)

Next in line are the terms that are cubic in u. We write

L22 =
∫
h

[
(u⊥ + ∇h) ·

(
− 3

4 u̇− 3
4 ∇u u− 1

4 ∇u⊥ u⊥)
+ u⊥ ·

(
λ
2 ∇⊥∇hu− λ

2 ∇u⊥ ∇h+ ( 3
4 − λ) (∇⊥u)T ∇h+ 1

4 (∇u⊥)T ∇h

+ ( 3
4 − λ) ∇⊥h∇ · u + ( 3

4 − λ)h∇⊥∇ · u + 1
4 h∇∇ · u⊥ + 1

4 ∇h∇ · u⊥)
+

(
λ2 ∆hu · ∇⊥h+ λ

4 hu⊥ · ∇∆h+ λ
4 h∇h · ∇∇ · u⊥ − λ

2 h∆h∇ · u⊥)
+

(
1
2 λ

2 h∇h · ∇∆h− 1
2 λ

2 h (∆h)2
)]

dx . (C 7)

We repeat our strategy for the quadratic-in-u terms, i.e.

L22 =
∫
h (u⊥ + ∇h) ·

[
− 3

4 u̇− 3
4 ∇u u− 1

4 ∇u⊥ u⊥

+ λ
2 ∇⊥∇hu− λ

2 ∇u⊥ ∇h+ ( 3
4 − λ) (∇⊥u)T ∇h+ 1

4 (∇u⊥)T ∇h

+ ( 3
4 − λ) ∇⊥h∇ · u + ( 3

4 − λ)h∇⊥∇ · u + 1
4 h∇∇ · u⊥ + 1

4 ∇h∇ · u⊥]
dx

+ Ldeg
22 , (C 8)

where the two terms involving ∇⊥h∇·u and h∇⊥∇·u do not contribute to Ldeg
22 , and

the others expand to

Ldeg
22 =

∫ [
−λ

2 h∇h · ∇⊥∇hu + (λ
2 −

1
4 )h∇h · ∇u⊥ ∇h

− ( 3
4 − λ)h∇h · ∇⊥u ∇h+ (λ

4 −
1
4 )h2 ∇h · ∇∇ · u⊥ − 1

4 h |∇h|2 ∇ · u⊥

+ λ2 h∆hu · ∇⊥h+ λ
4 h

2 u⊥ · ∇∆h− λ
2 h

2 ∆h∇ · u⊥

+ 1
2 λ

2 h2 ∇h · ∇∆h− 1
2 λ

2 h2 (∆h)2
]
dx . (C 9)
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To bring these terms into standard form, we use the following identities:∫
h∇h · ∇u⊥ ∇h dx = −

∫
hu⊥ ·

(
∇h∆h+ ∇∇h∇h+ h−1 ∇h |∇h|2

)
dx ,

(C 10)∫
h∇h · ∇⊥u ∇h dx = −

∫
hu⊥ · ∇⊥∇⊥h∇h dx

=
∫
hu⊥ ·

(
∇∇h∇h−∇h∆h

)
dx , (C 11)∫

h |∇h|2 ∇ · u⊥ dx = −
∫
hu⊥ ·

(
h−1 ∇h |∇h|2 + 2 ∇∇h∇h

)
dx , (C 12)∫

h2∆h∇ · u⊥ dx = −
∫
hu⊥ ·

(
h∇∆h+ 2 ∇h∆h

)
dx , (C 13)∫

h2 ∇h · ∇∇ · u⊥ dx = −
∫ (

h2 ∆h∇ · u⊥ + 2h |∇h|2 ∇ · u⊥)
dx

=
∫
hu⊥ ·

(
h∇∆h+ 2 ∇h∆h

+ 2h−1 ∇h |∇h|2 + 4 ∇∇h∇h
)
dx . (C 14)

The second step in (C 11) is based on identity (A 9). Collecting terms, we find

Ldeg
22 =

∫
hu⊥ ·

[
( 1
2 − λ2) ∇h∆h+ (λ− 1

4 )h∇∆h+ (2λ− 1) ∇∇h∇h
]
dx

+
∫ [

1
2 λ

2 h2 ∇h · ∇∆h− 1
2 λ

2 h2 (∆h)2
]
dx . (C 15)

Since our goal is to eliminate all terms that are quadratic or cubic in u, we must choose
v′ to be equal to the terms in the square bracket in (C 8) plus arbitrary terms that only
depend on h. I.e.,

v′ = v′free − 3
4 u̇− 3

4 ∇u u− 1
4 ∇u⊥ u⊥

+ λ
2 ∇⊥∇hu− λ

2 ∇u⊥ ∇h+ ( 3
4 − λ) (∇⊥u)T ∇h+ 1

4 (∇u⊥)T ∇h

+ ( 3
4 − λ) ∇⊥h∇ · u + 1

4 ∇h∇ · u⊥ + ( 3
4 − λ)h∇⊥∇ · u + 1

4 h∇∇ · u⊥ , (C 16)

where we choose

v′free = α∇h∆h+ β h∇∆h+ γ∇∇h∇h+ µh−1 ∇h |∇h|2 . (C 17)

As in the first order computation, we only introduce terms that have the same homo-
geneity as those already present.

If we substitute in this expression for v′ directly, we see that there are five different
terms that are quartic in h. However, integration by parts shows that there are actually
only three independent terms at this level:∫

h2 ∇h · ∇∆h dx = −
∫ (

h2 (∆h)2 + 2h |∇h|2 ∆h
)
dx , (C 18)∫

h∇h · ∇∇h∇h = −1
2

∫ (
h |∇h|2 ∆h+ |∇h|4

)
dx . (C 19)

We can eliminate the remaining mixed term via∫
h2 ∇h · ∇∆h dx = −

∫ (
h2 ∇∇h : ∇∇h+ 2h∇h · ∇∇h∇h

)
dx , (C 20)
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so that, using identities (C 18) and (C 19), we find∫
h |∇h|2 ∆h dx =

1
3

∫ (
h2 ∇∇h : ∇∇h− h2 (∆h)2 − |∇h|4

)
dx . (C 21)

Equations (C 18) and (C 19) then read∫
h2 ∇h · ∇∆h dx =

∫ (
2
3 |∇h|4 − 1

3 h
2 (∆h)2 − 2

3 h
2 ∇∇h : ∇∇h

)
dx , (C 22)∫

h∇h · ∇∇h∇h =
∫ (

1
6 h

2 (∆h)2 − 1
3 |∇h|4 − 1

6 h
2 ∇∇h : ∇∇h

)
dx . (C 23)

Substituting all intermediate expressions back into (5.9), we obtain the final form (5.29)
of transformed L2 Lagrangian.

Some of the key ideas in this paper have developed out of discussions with Rupert Ford,
Georg Gottwald, Simon Malham, and Matthew West. I also thank Onno Bokhove for a
thorough reading of an earlier version of the manuscript, as well as him, Mike Cullen,
David Dritschel, Michael McIntyre, Sebastian Reich, Guillaume Roullet, Ian Roulstone,
and all participants of the EPSRC network “Geometric Methods in Geophysical Fluid
Dynamics” for numerous stimulating discussions, and the network organizers for the
opportunity to participate. Finally, I thank the anonymous referees for their numerous
very constructive comments.
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