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Abstract We review the possible role of spontaneous emission and subsequent
capture of internal gravity waves (IGWs) for dissipation in oceanic flows under
conditions characteristic for the ocean circulation. Dissipation is necessary for the
transfer of energy from the essentially balanced large-scale ocean circulation and
mesoscale eddy fields down to smaller scales where instabilities and subsequent
small scale turbulence complete the route to dissipation.

Spontaneous wave emission by flows is a viable route to dissipation. For quasi-
balanced flows, characterized by a small Rossby number, the amplitudes of emitted
waves are expected to be small. However, once being emitted into a three-dimensional
eddying flow field, waves can undergo refraction and may be “captured.” During
wave capture, the wavenumber grows exponentially, ultimately leading to breakup
and dissipation. For flows with not too small Rossby number, e.g. for flows in the
vicinity of strong fronts, dissipation occurs in a more complex manner. It can occur
via spontaneous wave emission and subsequent wave capture, with the amplitudes
of waves emitted in frontal systems being expected to be larger than amplitudes of
waves emitted by quasi-balanced flows. It can also occur through turbulence and
filamentation emerging from frontogenesis.

So far, quantitative importance of this energy pathway—crucial for determining
correct eddy viscosities in general circulation models—is not known. Toward an
answer to this question, we discuss IGWs diagnostics, review spontaneous emission
of both quasi-balanced and less-balanced frontal flows, and discuss recent numerical
results based on a high-resolution ocean general circulation model.
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1 Introduction

The general circulation of the ocean is forced at large scales by winds and buoyancy
fluxes at the sea surface. The directly forced large-scale flows are thought to transfer
their energymainly via baroclinic instabilities tomesoscale eddies that are essentially
balanced and account for almost three fourth of kinetic energy of all oceanic motions
when leaving out surface waves (von Storch et al., 2012)1. While the generation of
these eddies via baroclinic and barotropic instabilities of the directly-forced large-
scale flows is well understood, little is known about the dissipation of these eddies.
Within the paradigm of geostrophic turbulence (Charney, 1971), mesoscale eddies
tend to transfer energy upscale (inverse energy cascade). To ensure an equilibrium
state, additional processes must transfer energy from mesoscales to smaller scales
so that small-scale turbulence can complete the down-scale cascade of energy to
dissipation.

The problem of identifying these energy transfer processes as the ocean’s routes
to dissipation was brought into focus by Müller et al. (2005). Their paper suggests
three possible routes: the inertia-gravity wave route, the instability route, and the
boundary route. They argue that none of these routes has received strong theoretical
or observational confirmation. However, without a solid understanding of the ocean’s
route to dissipation, ocean general circulation models have to rely on, to a significant
degree, arbitrarily chosen eddy viscosity coefficients. So far, most of the energetic
considerations have concentrated on waves generated by external factors, such as
the winds and the bottom topography. For example, the high-resolution numerical
simulations by Nikurashin et al. (2013) emphasize the importance of gravity waves
generated by balanced flowover rough bottom topography, inducing a forward energy
cascade en route to dissipation.

Recent numerical studies showed strong evidence that eddying flows are able to
spontaneously emit internal gravity waves (see the special issue on ‘Spontaneous
Imbalance’ of the Journal of the Atmospheric Sciences from May 2009). Waves,
once emitted by an eddying flow, can be refracted by the flow and become captured
in certain flow configurations. Wave capture is characterized by an exponential
increase in wavenumber and an exponential decrease in the intrinsic group velocity.
Furthermore, the wave amplitude grows also exponentially, thereby draining energy
from the background flow. These changes make captured waves prone to dissipation
and provide a mechanism for an interior route to dissipation directly from quasi-
balanced eddying flows themselves, without involving ocean’s boundaries and other
unbalanced flows. However, it is still open whether this mechanism is significant for
dissipation in the real ocean.

The process of spontaneous imbalance has been researched extensively following
the pioneering work of Lighthill (1952) and has received interest in the past decade.
For details, we refer the reader to the excellent reviews by Vanneste (2013) for the

1 Note that a global estimate of the ocean kinetic energy, which requires three-dimensional informa-
tion about flow velocity, is not available from observation and has to be derived using eddy-resolving
numerical simulations
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theory and by Plougonven and Zhang (2014) for observations in the atmosphere. A
broad overview can also be gained from the special issue on ‘Spontaneous Imbalance’
of the Journal of the Atmospheric Sciences from May 2009.

In this review, we will therefore focus on the role of spontaneous imbalance for
the energy pathway to dissipation and on the diagnostics for wave detection.

The Chapter is organized as follows. In Section 2, we review the process of
spontaneous imbalance. As discussed, the emitted waves have only small amplitudes,
but we speculate they might still play a non-negligible role for energy dissipation
through their steepening following their capture by the mean flow. In Section 3,
we thus review the mechanism of wave capture which is crucial if wave emission
by quasi-balanced flows with small Rossby number is to play a noticeable role for
the total dissipation of energy. In Section 4, we review the interaction between the
spontaneously emitted IGWs and fronts, not necessarily in the small Rossby number
regime, focusing especially on the role of waves in frontal geostrophic adjustment.
In Section 5, we switch to the diagnostics for the detection of the waves, with
particular emphasis especially given to the method of “optimal potential vorticity
balance.” In Section 6, we discuss the role of high-resolution general circulation
model for investigating spontaneous wave emission. We conclude with a summary
and discussion in Section 7.

2 Rotating shallow water equations and spontaneous emission

The study of wave emission by vortical flows, also known as spontaneous imbalance
or spontaneous wave emission, reaches back to the celebrated paper on aerodynamic
sound generation by Lighthill (1952). Ford (1994) and Ford et al. (2000) showed that
the same mechanism applies to the generation of IGWs in nearly balanced rotating
flow. In particular, Ford (1994) pointed out that the rotating shallow water (RSW)
equations play a particular role for studying spontaneous imbalance: in the absence
of rotation, these equations are equivalent to the equations for a two-dimensional
adiabatic gas. Furthermore, the RSW equations are the simplest equations in which
both vortical motions and inertia gravity waves can exist. In the following, we review
the basic properties of the shallow water equations as a simple model for barotropic
flow, then proceed to explain the mechanism of spontaneous wave generation.

2.1 Shallow water on the f -plane

The shallow water equations on the f -plane can be written as

∂t (hu) + ∇ · (hu ⊗ u) + f (hu)⊥ = − 1
2 g∇h2 , (1a)

∂th + ∇ · (hu) = 0 , (1b)
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Fig. 1 Horizontal velocity divergence (top) and geopotential (bottom) at 130mb on day 11 of the
T126 model simulation reported by O’Sullivan and Dunkerton (1995). Vectors show the horizontal
wind. The presence of IGWs is apparent in the velocity divergence field. The quasi-balanced
background flow emitting the waves is described by the geopotential contours and wind vectors in
the bottom figure. From O’Sullivan and Dunkerton (1995).

where h = h(x, t) denotes the layer depth, u = u(x, t) the two-dimensional velocity
field, x the vector of horizontal Cartesian coordinates, ∇ = (∂x, ∂y), f the Coriolis
parameter, u⊥ = (−u2, u1), and g is the constant of gravitational acceleration. The
system conserves the total energy

H =
1
2

∫
(h |u |2 + g h2) dx , (2)

in time and the potential vorticity

q =
ζ + f

h
, (3)

where ζ = ∇⊥ · u denotes the relative vorticity along particle trajectories. The
material conservation of potential vorticity implies conservation of the potential
enstrophy
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Z =
1
2

∫
h q2 dx . (4)

We remark that the shallow water equations can be written in a non-canonical
Hamiltonian form, see Franzke et al. (2019).

2.2 Spontaneous emission

Taking divergence and curl of the shallowwater momentum equation (1a), we obtain,
respectively,

∂t∇ · (hu) + ∇∇ : (hu ⊗ u) − f ∇⊥ · (hu) = − 1
2 g ∆h2 , (5a)

∂t∇⊥ · (hu) + ∇⊥∇ : (hu ⊗ u) + f ∇ · (hu) = 0 , (5b)

where we use ∆ to denote the Laplacian and ∇∇ to denote the Hessian operator. Fur-
ther, “⊗” denotes the tensor product of two vectors and the colon denotes contraction
over both indices of two 2-tensors. Taking the time derivative of (5a), eliminating
the Coriolis term using (5b), and replacing ∇ · (hu) by −∂th using the continuity
equation (1b), we find

−∂3
t h + ∂t∇2 : (hu ⊗ u) + f ∇⊥∇ : (hu ⊗ u) − f 2 ∂th = − 1

2 g ∂t∆h2 . (6)

Consider a vortical flow described by (6) confined to a bounded region of the spatial
domain.We denote the constant layer depth far from the center of the vorticalmotions
by h0 and assume that h0 is constant. Then the right hand side of (6) can be rewritten
as

− 1
2 g ∂t∆h2 = − 1

2 g ∂t∆(h − h0)
2 − g h0 ∂t∆h . (7)

Writing c0 = (gh0)
1/2 to denote the gravity wave phase speed far from the center of

vortical motions and rearranging terms, we obtain(
∂2

∂t2 + f 2 − c2
0 ∆

)
∂th = ∇∇ : T (8)

with
T = ∂t (hu ⊗ u) − f h

u⊥ ⊗ u + u ⊗ u⊥

2
+ I

g

2
∂t (h − h0)

2 , (9)

where I denotes the 2 × 2-identity matrix.
Equation (8) can be seen as the shallow-water equivalent of the Lighthill equation

(Ford, 1994; Ford et al., 2000). The left hand side of (8) is a linear inertia-gravity
wave operator. When the Froude number Fr = U/c0, with U denoting the typical
velocity in the region of the vortical flow, is small, the right hand side of (8) depends,
to good approximation, on the vortical flow alone and can hence be considered as a
given source of inertia-gravity waves. In other words, the source term is known as
soon as the vortical flow is known. Ford et al. (2000) study the case when potential
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vorticity anomalies are confined to a finite-size region surrounded by a region in
which only linear waves propagate. Using matched asymptotic expansions with the
Froude number as small parameter, they link an unsteady vortex pattern in the inner
region to emitted propagating waves in the outer region, thereby giving an explicit
description of the mechanism of spontaneous emission.

2.3 Beyond shallow water

Going beyond prototype studies, there is now an extensive body of work using high-
resolution numerical simulations onmore general flows including surface-intensified
fronts (Gall et al., 1988; Danioux et al., 2012), wave emission by baroclinically
unstable flows (O’Sullivan and Dunkerton, 1995; Zhang, 2004; Plougonven and
Snyder, 2005, 2007; Viúdez, 2006; Viúdez and Dritschel, 2006; Nadiga, 2014),
potential vorticity anomalies (Lott et al., 2010, 2012), and dipolar flows (Viúdez,
2007; Snyder et al., 2007, 2009; Wang et al., 2009; Wang and Zhang, 2010). Of
particular interest for the present discussion is the study of O’Sullivan andDunkerton
(1995), illustrated in Fig. 1. The atmospheric flow considered there is comparable
to the situation in the Southern Ocean, even though the oceanic baroclinic eddies
have much smaller spatial scales than those in the atmosphere. Both the distorted jet
considered by O’Sullivan and Dunkerton and the eddying circumpolar currents in
the Southern Ocean represent essentially balanced flows.

Most of the studies cited above focus on spontaneous imbalance as a wave gener-
ation mechanism and do not directly consider the fate of waves after being emitted.
According to Lighthill (1952) and Ford (1994), the waves resulting from spontaneous
emission have wavelengths much larger than the spatial scales of the wave source.
The waves identified in the references mentioned (e.g. in (O’Sullivan and Dunkerton,
1995)) have, on the contrary, extremely short wavelengths (i.e., wavelengths close
to the grid size of the model). Thus, the working hypothesis is that these waves do
not represent waves just emitted by the flows, but waves, after having been emitted,
are refracted by the flows in which they are embedded, a possibility pointed out by
Plougonven and Snyder (2005). This is further discussed in Section 3 below.

Theoretical arguments show that spontaneous emission of IGWs is a generic
phenomenon (Vanneste and Yavneh, 2004, 2007; Vanneste, 2008, 2013). However,
the strength of IGW emission depends on the magnitude of Rossby number charac-
terizing the flow. IGW emission is strong for flows with large Rossby number. This
happens at least (i) in the equatorial ocean where the Coriolis parameter is small, and
(ii) in the vicinity of strong fronts with large and spatially confined flow velocities
that lead to large Rossby numbers.

In this review, we focus on issues pertaining to the generic situation of extra-
tropical flows and refer the reader for the specifics of equatorial dynamics to Le Som-
mer et al. (2004) and Medvedev and Zeitlin (2005). Regarding spontaneous genera-
tion of near-internal gravity waves in the Kuroshio front, Nagai et al. (2015) found
that the energy emitted by the waves is larger than the energy produced by lee waves
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created by the interaction of balanced flows with the bottom topography (Nikurashin
and Ferrari, 2011). Most of the energy radiated from the frontal region, however,
is being reabsorbed, suggesting that wave capture plays an important role in fron-
togenesis. The situation in frontal regions will be addressed in Section 4 further
below.

IGW emission is weak when the Rossby number is small. In this case, there
is a clear separation between the timescales of the flow and the timescales of the
emitted IGWs. The slow, quasi-balanced components can be accurately described up
to terms that are exponentially small in the Rossby number. Following the theoretical
arguments, waves spontaneously emitted by the flows must be exponentially weak.
Even though most atmospheric and oceanic flows are in this regime, wave emission
is not necessarily negligible due to subsequent refraction and wave capture affecting
all IGWs, however weak.

There is renewed interest in understanding refraction and capture by the back-
ground flow in connection with spontaneous wave emission in vortical flows.
Plougonven and Snyder (2005) demonstrate the importance of wave capture by
showing that some characteristics of the IGWs emitted by tropospheric jets are de-
termined by the process of wave capture rather than by the generation mechanism
itself. Wave-trapping in the ocean has been studied by Kunze (1985), Klein and
Treguier (1995), Xing and Davies (2004) and, in data analysis, by van Haren (2003)
with special emphasis on near-inertial waves. Trapping of sub-inertial waves in an-
ticyclonic regions of the flow has also been studied theoretically for axisymmetric
vortices (Kunze and Boss, 1998; Llewellyn Smith, 1999).

3 Ray equations and wave capture

Theoretical studies of the interaction between emitted waves and a background flow
are often done using ray equations formulated for a wave packet located at x = x(t)
traveling with intrinsic group velocity cg,i in a background flow u = u(x, t),

dgx

dt
≡ cg = cg,i + u , (10a)

dgk

dt
= −(∇u) · k , (10b)

where cg is the effective group velocity, dg/dt denotes the time derivative in a frame
traveling with the wave packet, ∇u is the gradient tensor of the flow u.

To obtain equation (10b), the intrinsic dispersion relation is assumed to be inde-
pendent of x and t and the WKB approximation is used. Under these assumptions,
the path of the wave train is completely determined by equation (10a) and the tem-
poral evolution of the wavenumber vector k = (k, l,m) along the path is described
by (10b); the refraction process is, in particular, independent of stratification. The
derivation of (10) in the spirit of a WKB approximation, and including the next
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order terms is sketched in Vanneste (2013), who proceeds to explain the mechanism
of spontaneous emission. Broutman et al. (2004) review ray tracing in geophysical
fluid dynamics. Olbers et al. (2012) give an extensive treatment of wave propagation
in a variable environment.2

When the intrinsic group velocity is inversely related to the modulus of the
wavenumber vector, as is the case for internal IGWs, a wave packet propagating
in a flow field is refracted under suitable circumstances such that the ray equation
describing the evolution of the wavenumber takes the same form as the equation
describing the evolution of the gradient of a passive tracer which is known to grow
exponentially in time. Correspondingly, the relative group velocity vanishes and the
wave amplitude increases; the wave packet becomes “captured” or “frozen” into the
background flow. We note that in wave capture it is the horizontal (and vertical)
wave length which goes to zero. This is different from the formation of a critical
layer where vertical shear causes only the vertical wave length to go to zero while
leaving the horizontal wavenumber unchanged.

To obtain analytical solutions, Jones (1969) considered a three-dimensional flow
with constant gradient tensor ∇u. More recently, Bühler and McIntyre (2005) and
Plougonven and Snyder (2005) studied a horizontally divergent flow u = (u, v, 0)
with a gradient tensor of the form

∇u =
©«
ux vx 0
uy vy 0
uz vz 0

ª®¬ . (11)

For captured waves, the intrinsic group velocity is essentially zero, so that the group
velocity cg is essentially determined by u. The direction of cg generally differs
from the direction of the asymptotic wave vector k . This is most easily seen in the
special case considered by Plougonven and Snyder (2005) where u = (u, v,w) has
the gradient tensor

∇u =
©«
−α 0 0
0 α 0
β γ 0

ª®¬ (12)

so that the flow is hyperbolic in the horizontal plane and the solution to (10b) reads

kh(t) = (k0 eαt, l0 e−αt ) . (13)

Thus, the wave vector asymptotically aligns with one of the axes (i.e., the heteroclinic
orbits) at the hyperbolic points while the captured waves move along the hyperbolic
flow. The angle between the ray and the horizontal wavenumber vector changes as
the captured wave packet is advected by the hyperbolic flow. Such changes make it
more difficult to identify the relation between the captured waves and the flow which
refracts the waves.

2 By writing the dispersion relation in the form ω(k, t) = ωi(x, t) + u(x, t) · k = Ω(k; x, t) and
assuming that the intrinsic dispersion relation and hence the intrinsic frequency ωi is independent
of x, their equation (6.46) reduces to our equation (10b).
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Realistic flow fields are often locally axial, with the horizontal component uh
of u being approximately aligned with the isobars. Choosing a frame in which x is
tangential and y is perpendicular to the direction of the flow, a horizontal purely axial
flow is described by uh = (u(x, y), 0). This flow can have a shear uy transverse to the
flow axis and a stretching rate ux along the flow axis. An incompressible Boussinesq
flow must then have a vertical velocity w with ux + wz = 0.

Generally, ux and uy have complicated spatial structures. In the core of axial
flows, however, all flows reveal the common feature that the shear uy vanishes. With
uy = 0, ux = a , 0 a constant, and wz = −ux = −a, the gradient tensor takes the
simple form

∇u =
©«
ux 0 0
0 0 0
0 0 wz

ª®¬ = ©«
a 0 0
0 0 0
0 0 −a

ª®¬ , (14)

so that the solution to (10b) takes the simple form

k(t) = (k0 e−at, l0,m0 eat ) . (15)

When the flow is horizontally compressing, i.e., when a = ux < 0, the asymptotic
wave vector aligns with the direction of the flow, and also with the direction of
propagation of the wave packet, provided that the intrinsic group velocity is either
aligned with u or small compared to u. As |k | grows exponentially, the vertical
wavenumber decreases exponentially and the vertical component of the intrinsic
group velocity grows exponentially. For an ocean limited by its lower and upper
boundary, a wave train with a high vertical group velocity reaches the boundary
in a short time. Its reflection at the boundary can easily lead to the emergence of
vertically standing structures.

The refraction through axial flows can be significant for two reasons. First, axial
flows represent an essential ingredient of a realistic atmospheric and oceanic flow
field. Second, the properties of waves predicted by (15) with a negative a so that
the magnitude of the component of k along the flow is large (or the corresponding
wavelength is small) and k is aligned with the flow (in other words, aligned with the
wave crests are perpendicular to the flow) are qualitatively consistent with what is
seen in the atmosphere (Fig. 1) and in the ocean (Fig. 9).

4 Interactions between IGWs and density fronts

4.1 Wave capture in frontal strain

The emission of IGWs is particularly strong during frontogenesis. In this classical
problem, the Rossby number Ro = U/ f L and the bulk Richardson number
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Ri =
N2

0
(∆U/∆z)2

=
N2

0 f 2

S4
0

, (16)

where N2
0 and S2

0 are, respectively, the vertical and horizontal buoyancy gradients,
are both O(1), implying a dominant role of ageostrophic shear. They also change
with time and can thus affect wave emission and subsequent recapture. Surface
density fronts, or frontal regions created in the interior by mesoscale dynamics, are
characterized by large values of strain, so the mechanism of wave capture, described
in the previous section, is expected to be particularly active. To study wave capture
in this context, the configurations discussed in there are insufficient as they are
used under the assumption that both the time dependence of the background flow
and the role of ageostrophic shear have a negligible influence on the dynamics of
IGWs. The wave capture theory by Bühler and McIntyre (2005) also assumes that
the intrinsic frequency and the polarization relation of the waves are independent
of the geostrophic flow, while in reality they are both function of the Richardson
number. Notice however that slow changes of N , u, and ∇u could be incorporated
using WKB theory.

Thomas (2012) suggests a more elaborate flow configuration featuring a time-
varying background flow and ageostrophic shear which is set up as follows. Starting
from the inviscid adiabatic rotating Boussinesq equations

Dtu + f ez × u = −
1
ρ0

∇p + b ez , (17a)

∇ · u = 0 , (17b)
Dtb = 0 , (17c)

where b denotes the buoyancy and ez the unit vector in the vertical direction, we split
u = ū + u′, b = b̄+ b′, and p = p̄+ p′ into mean flow and perturbation components.
Now assume that the mean flow has constant horizontal strain α and linear vertical
shear with time-varying coefficients û(t) = (û(t), v̂(t), 0), so that

ū(x, t) = ©«
α x + û(t) z
−α y + v̂(t) z

0

ª®¬ , (18a)

b̄(x, t) = N2(t) z − S2(t) y , (18b)

and

p̄(x, t) = −ρ0

(
1
2 α

2 (x2 + y2) + f α xy − 1
2 N2(t) z2 + S2(t) yz

)
. (18c)

This mean flow yields the tensor

∇ū =
©«
α 0 0
0 −α 0

û(t) v̂(t) 0

ª®¬ . (19)
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Inserting the mean flow ansatz (18) with vanishing perturbation quantities back into
(17), we obtain a system of ordinary differential equations for the time dependent
coefficients, namely

d
dt

©«
û
v̂

S2

N2

ª®®®¬ =
©«

f v̂ − α û
− f û + αv̂ + S2

αS2

v̂ S2

ª®®®¬ (20)

with initial conditions u(0) = S2
0/ f , v̂(0) = 2α S2

0/ f 2, N2(0) = N2
0 , and S2(0) = S2

0 ,
which correspond to an initial vertical and horizontal buoyancy gradient and to
corresponding geostrophic velocities in the presence of strain α. System (20) is
easily solved for the vertical and horizontal buoyancy gradients,

S2(t) = S2
0 eαt , (21a)

N2(t) = N2
0 +

S4
0

f 2 (e
2αt − 1) , (21b)

and the mean flow

ū(x, t) = ©«
α x + f −1 S2(t) z
−α y + 2α f −2 S2(t) z

0

ª®¬ . (21c)

The amplification in time of the buoyancy gradients is a characteristic feature of
frontogenesis.

Assuming that the perturbation is invariant in the x-direction, the equations for
the perturbation fields read

D̄tu
′ + u′ · ∇ū + u′ · ∇u′ + f ez × u′ = −

1
ρ0

∇p′ + b′ ez , (22a)

∇ · u′ = 0 , (22b)
D̄tb′ + u′ · ∇b̄ + u′ · ∇b′ = 0 , (22c)

where D̄t = ∂t + v̄ ∂y . Inserting the plane wave ansatz u′(x, t) = eik ·x with k =
(0, l,m) into (22), we find that the wavenumber vector changes in time according to

k(t) =
(
0, l0 eαt,m0 − S2

0 f −2 (e2αt − 1)
)
. (23)

The polarization angle (the angle the streamlines make with the horizontal direction)

θ = − tan−1
(

l
m

)
(24)

changes with time in the presence of frontogenetic strain. According to (23), it
asymptotes to
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θρ = tan−1
(

S2

N2

)
(25)

for all initial angles except zero. Further, the perturbation kinetic energy density

e = 1
2 |u

′ |2 (26)

satisfies the evolution equation

D̄te = −u′∗ w′ ∂z ū −
1
ρ0

∇ · (u′∗ p′) + w′∗ b′ + α (|v′ |2 − |u′ |2) − v′∗ w′ ∂z v̄ , (27)

where the asterisks indicate complex conjugates. The different terms on the right
hand side can be interpreted as follows:

• The first term represents geostrophic shear production;
• the second term represents convergence or divergence of the energy flux;
• the third term is the release of potential energy via the buoyancy flux;
• the fourth term is the shear production by the lateral gradients of the mean flow;
• the last term represents the ageostrophic shear production.

This suggests a route to dissipation of the mesoscale flow different from the
scenario associated with wave capture. In wave capture, the wave amplitude grows
exponentially in time, leading to wave breaking and dissipation. If frontogenesis
is present, multi-scale analysis shows that the wave action is no longer conserved,
but decreases in time (Thomas, 2012). In this case, the energetics of the waves are
modified by the Reynolds stress introduced by the additional shear production term
related to the strain-driven ageostrophic flow. Numerical simulations carried out by
Thomas (2012) using the explicit expression for the deformation shear (19) show
that the evolution of the kinetic energy density of the IGWs is largely controlled by
the last two terms in (27). In particular, in the presence of frontogenetic strain, i.e.,
when α > 0, a perturbation satisfying |v′ | > |u′ | acts to mix the momentum of the
deformation field and extracts its kinetic energy—acting thus as an effective viscosity.
In contrast, the ageostrophic shear production term is negative for all θ, resulting
in a damping of the IGWs, except when the initial angle is 90◦ < θ0 < 180◦, for
which the streamlines are tilted against the ageostrophic shear and the IGWs exhibit
a transient growth that is long enough to affect the energetics.

As a note of caution, it should be noted that the results here reported are derived for
a basic state that is perturbed with disturbances that are invariant in the x-direction.
Studying the nonlinear stability with respect to symmetric perturbations using the
Lyapunov method, Cho et al. (1993) found that the growth of the instabilities is
amplified by a factor

Ri1/2 + 1
Ri1/2 − 1

, (28)

where Ri is the Richardson number. This result shows that significant amplification
is present only when Ri ≈ 1. Further analysis is thus required for more general,
non-symmetric, perturbations.
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4.2 Role of IGWs in frontal geostrophic adjustment

Spontaneous imbalance is linked to, but is not the same as, the process of geostrophic
adjustment (also known as Rossby adjustment; see Rossby 1938). Geostrophic ad-
justment describes the evolution of a perturbed state into a final, smooth state with the
same potential vorticity through emission of waves. This mechanism is particularly
active during frontogenesis. Thus, to fully understand the energetics of frontogenesis,
a careful study of the relation between capture and adjustment is necessary.

The linear theory of geostrophic adjustment was initiated by Obukhov (1949)
and has matured since; see Blumen (1972) for a review on the early results. The
nonlinear theory, however, is much less known. Nonlinear effects during geostrophic
adjustment include secondary effects such as trapping of IGWs (the production of
waves that are unable to leave the frontal region) and wave-breaking which modify
the characteristics of the flow, in particular the PV, and thus feed back into the process
of geostrophic adjustment. Zeitlin (2010) posed a series of largely open questions
regarding the process of adjustment: Does a final, adjusted state, exist? Is it stable?
What is the effect of the IGWs on the energy pathway of the system? Do emitted and
trapped waves co-exist? And do trapped waves interact with the front?

The classic theory of frontogenesis relies on the semi-geostrophic approxima-
tion (Hoskins and Bretherton, 1972), which in turn relies on balanced dynamics,
thereby removing IGWs altogether. The turbulence emerging in the process of semi-
geostrophic frontogenesis was studied numerically by Ragone and Badin (2016)
who found that ageostrophic advection is responsible for the growth of filamentary
structures with skewed vorticity. Filamentation itself can induce a forward cascade
of potential temperature/buoyancy variance and can thus be a possible route to dis-
sipation, even if this might still be inhibited by the fact that semi-geostrophic flows
are balanced. In this sense, the energy pathway in frontal regions can be much more
complex than the pathway through wave capture alone.

The situation for flow far from balance is very different. Some progress has been
made by analyzing the cross-frontal rotating shallow water (RSW) equations Zeitlin
et al. (2003) and confirmed numerically by Bouchut et al. (2004). Consider the RSW
equations on the f -plane with no dependence on the along-front direction y, written
here in components:

∂tu + u ∂xu − f v = −g ∂xh , (29a)
∂tv + u ∂xv + f u = 0 , (29b)
∂th + ∂x(uh) = 0 . (29c)

This system can also be interpreted as the one-dimensional RSW equations with the
addition of a transverse flow.

In addition to the potential vorticity q = (∂xv + f )/h, the system possesses a
second Lagrangian invariant, the geostrophic momentum M = v + f x. Introducing
a Lagrangian x-coordinate via ÛX = u(X, t), we write the two momentum equations
in system (29) as
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ÜX − f v = −g ∂xh , (30a)
Ûv + f ÛX = 0 . (30b)

The second equation can be integrated immediately, giving

v(a, t) + f X(a, t) = M(a) , (31)

where we write a to denote a Lagrangian label coordinate. The geostrophic momen-
tum M(a) is determined by the initial conditions: given the initial velocity v0, one
has M(a) = v0(a) + f a. Note that the adjusted state are no longer slowly evolving,
but exactly stationary in Lagrangian coordinates. Further, in Lagrangian coordinates
the problem reduces to a semi-geostrophic problem in which geostrophy is retained
in (30a), but where (30b) is purely ageostrophic. The continuity equation (29c) in
Lagrangian coordinates takes the form

h(X(a, t), t) =
h0(a)

X ′(a, t)
, (32)

where X ′ denotes the derivative with respect to the label a. By the chain rule,

∂xh =
h′0
(X ′)2

− h0
X ′′

(X ′)3
. (33)

Writing φ(a, t) = X(a, t) − a to denote the displacement of a particle from its initial
position and inserting (31) and (33) into (30a), we obtain a closed equation for φ,

Üφ + f 2 φ +
g h′0
(1 + φ′)2

+
g h0

2

[
1

(1 + φ′)2

] ′
= f v0 , (34)

which can be solved with appropriate initial conditions. Assuming positive potential
vorticity as a condition for solvability and taking appropriate frontal initial condi-
tions, Zeitlin et al. (2003) solved (34), thereby showing that to leading order in the
cross-frontal Rossby number, the fast and slow dynamics split so that there are no fast
oscillations trapped in the frontal region. An example of a solution to (34) is shown in
Fig. 2. The front is located at x = 0, situated in between a double jet configuration set
by the initial conditions h0(x) = 1+ exp (−x2), v0(x) = −2(x +0.2 sin(x)) exp (−x2),
and u0(x) = 0.1 exp (−x2). The horizontal axes show the horizontal distance x and
time. Surfaces show the time evolution of the particle displacement φ. An initially
small departure from balance evolves emitting fast IGWs as well as slowly dispersing
near-inertial oscillations. Evolving toward an adjusted state which is a minimizer of
the energy, the system sheds energy also via the emergence of shocks. One of these
shocks is visible on the left of the figure, where the relative vorticity takes negative
values.

This scenario was extended to two-layer stratification by Le Sommer et al. (2014)
and to stratified rectilinear fronts by Plougonven and Zeitlin (2005). The presence
of stratification allows not only for the process of baroclinic instabilities, but also
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Figure 1. Geostrophic adjustment of the double-jet configuration (chosen for technical reasons
of spatial periodicity) with a Gaussian profile of initial elevation: hI (x) = 1 + exp(−x2), slightly
imbalanced vI (x) = −2(x + 0.2 sin(x)) exp(−x2), and uI (x) = 0.1 exp(−x2), as obtained by
straightforward numerical integration of equation (13) using the standard MATHEMATICA
routine NDSolve. Time and initial positions of Lagrangian particles are along the horizontal
axes, the particle displacement X − x is along the vertical axis. Emitted fast gravity waves and
slowly dispersing quasi-inertial oscillations are clearly seen, as well as systematic displacements
of fluid particles necessary to reach the final adjusted state. At least one shock forms and
propagates toward the left, in agreement with the results of § 7, but because of low resolution
the result is the fuzzy region on the left.

and the Lagrangian density

L = hI

(
Ẋ2

2
− f 2 X2

2
+ f FX

)
− gh2

I

2

1

X′ . (16)

Introducing canonical variables (fields) P = hI Ẋ, X we obtain a corresponding
Hamiltonian:

H =

∫
dx

(
P2

2hI

+ hI

(
f 2 X2

2
− f FX

)
+

gh2
I

2

1

X′

)
. (17)

As usual, the vanishing of the first variation of the Hamiltonian δH gives the equation
for the steady state:

hI (f
2X − f F ) +

(
gh2

I

2X′2

)′

= 0, P = 0. (18)

This is just the state of geostrophic equilibrium (4) expressed in Lagrangian coordi-
nates. A straightforward calculation of the second variation δ2H shows that it is
always positive-definite and, thus, the geostrophic equilibria are formally stable.

Fig. 2 Solution of (34) with initial conditions h0(x) = 1 + exp (−x2), v0(x) = −2(x +
0.2 sin(x)) exp (−x2), u0(x) = 0.1 exp (−x2). The horizontal axes show the horizontal distance
x and time. Surfaces show the time evolution of the particle displacement φ = X − x. The solution
shows emission of fast gravity waves and slowly dispersing near-inertial oscillations. A shock is
visible on the left side of the front (negative values of x). From Zeitlin et al. (2003).

for symmetric inertial instabilities. Plougonven and Zeitlin (2005) demonstrate that
nonexistence of a smooth adjusted state in vertically bounded domains is generic,
with the system evolving toward a singularity in finite time, even in the absence of a
background confluent flow. In this setting, there are trapped modes with horizontal
scales comparable to the width of the jet. The existence of shocks and the breaking
trapped modes can represent a possible pathway toward dissipation.

The analysis reported here becomes more complicated when passing from the 1D
RSW to the 2D RSW equations (Reznik et al., 2001) where near-inertial oscillations
stay coupled to the slow vertical component for a long time and act to retard the
process of adjustment with respect to the standard scenario of fast dispersion of
inertial-gravity waves.

Further complication might be introduced by the presence of a background con-
fluent flow, which might be responsible for time dependent Rossby and Richardson
numbers, as discussed in Section 4.1. In turn, this might affect the transition toward
a possible adjusted state. A study of an initially smooth time evolving confluent flow
would be also interesting for the comparison with the behavior of balance models
in the same configuration, such as the surface quasi-geostrophic model, for which
proof of the formation of a singularity in a finite time is linked to the formation
of singularities in the 3D Euler equation and for which the problem is still open
(Constantin et al., 1994).
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5 Diagnostics

Crucial to any investigation of IGW activity is the need to consistently and efficiently
split the velocity and mass fields into a balanced flow component and the residual,
usually interpreted as the inertia-gravity gravity wave field.

Flows characterized by a small Rossby number evolve on timescales much longer
than the timescales of IGWs emitted by the flows. In this situation, the emitted
waves can reasonably well be diagnosed using a linear time filter based on a Fourier
decomposition. Linear filters are straightforward and easy to apply. Fig. 3 shows the
geographical distribution of the super-inertial kinetic energy, obtained by applying
such a filter. However, it is not clear how small the Rossby number should be for
ensuring adequate wave detection and whether this procedure leads to a consistent
separation over the global domain. A review on time filters can be found in von
Storch and Zwiers (1999).

An alternative characterization is provided by balance relations which can be
derived by systematic asymptotic expansion in various ways; see, e.g., the review by
McIntyre (2015). One possibility is the elimination of the vertical velocity associated
with balanced motion through the Omega equation to identify the residual signal of
the waves (Danioux et al., 2012). There is a variety of more sophisticated balance
relations such as the second order correction to quasi-geostrophic theory (Muraki
et al., 1999), the semi-geostrophic (Hoskins and Bretherton, 1972; Hoskins, 1975),
surface semi-geostrophic (Badin, 2013; Ragone and Badin, 2016), δ-γ balance (Mo-
hebalhojeh and Dritschel, 2001), the L1-model and variants (Salmon, 1985, 1996;
McIntyre and Roulstone, 2002; Oliver and Vasylkevych, 2016), and many others;
see, e.g., Barth et al. (1990) for a long list of intermediate models and a comparison
of their performance in geostrophic turbulence andAllen et al. (2002) for a numerical
comparison in a nonturbulent regime. The general advantage of balance relations is
that they offer an a priori way of separating motion slaved to PV from other types of
motion, at least to some order of approximation in the limit of small Rossby number.
The drawback is that they require a careful scale analysis and that they are, by con-
struction, restricted to a specific limited regime of validity. Nonetheless, they offer
ways to “diagnose the diagnostics” as the only first-principles analysis available.

A third alternative is the equation-free “optimal potential vorticity balance”
scheme pioneered by Viúdez and Dritschel (2004). Their work is based on the
notion that geophysical flows are determined to a large extend by potential vorticity,
so that the balanced component of the fields are those which are slaved to potential
vorticity. Their procedure can be implemented on top of a purely numerical model
by slowly increasing the influence of nonlinear interactions from a trivial initial state
where the splitting into balanced and imbalanced modes is explicit to the fully non-
linear final state. So long as the energy in the imbalanced degrees of freedom remains
adiabatically invariant, the final state will be approximately balanced whenever the
initial state is. Optimal balance has some highly desirable features, in particular,
carrying no explicit assumptions on scales, only weak dependence on numerical
parameters such as the time horizon of integration, and the possibility to define
balance having nothing but an actual numerical code. Moreover, in simple settings it
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Fig. 3 Square root of super-inertial kinetic energy,
√
ksup, at 291m in a 0.1◦ simulation performed

with the MPIOMOGCM. The super-inertial kinetic energy is obtained by Fourier decomposing the
hourly zonal and meridional velocity in the frequency domain and calculating the mean variance of
the zonal and meridional velocity fluctuations at frequencies larger than the local inertial frequency.
The color scale is in units of m/s. Numbers given refer to log10

√
ksup.

can be proved that the procedure yields near-optimal results in the asymptotic limit
of large scale separation between balanced and imbalanced motion (Cotter, 2013;
Gottwald et al., 2017). However, implementation and pre-asymptotic behavior in
realistic configurations remains largely unexplored.

No matter whether a linear or a dynamical filter is used, we recommend to
first assess the flow field by using e.g. the Rossby number (Section 5.1). Some
pitfalls encountered when using linear filters is briefly discussed in Section 5.2.
The equation-free “optimal potential vorticity balance” scheme, which we hope to
be applicable for a large range of dynamical regimes, is discussed in Sections 5.3
and 5.4.

5.1 Characterization of flow regimes via the Rossby number

Any splitting of motions into balanced and imbalanced components, whether by
linear filtering or more sophisticated techniques, relies on at least some degree of
scale separation. For geophysical flow, themost important scale separation parameter
is the Rossby number, informally described as the ratio of the inertial force to the
Coriolis force. Small Rossby number flows are dominated by planetary rotation and
can be thought of as well-balanced. When the Rossby number is well below one,
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Fig. 4 Square root of super-inertial kinetic energy,
√
ksup, at 291m in the same 0.1◦ simulation

considered in Fig. 3. The super-inertial kinetic energy is obtained by filtering out the sub-inertial
variance using a running average filter with the filter window identical to the local inertial period.
The color scale is in units of m/s. Numbers given refer to log10

√
ksup.

the time scales of the mean flow are clearly separated from IGWs. In this case,
IGWs can be identified using simple Fourier filters. For larger Rossby numbers,
balance relations or dynamical filters are required to separate IGWs from the full
flow field. We emphasize, however, that for Rossby numbers close to or larger than
unity, the concept of balance breaks down altogether and no method will lead to
an unambiguous and physically meaningful splitting; see, e.g., the discussion in
McIntyre (2009).

The textbook definition of the Rossby numberRo = U/( f L), whereU denotes the
typical magnitude of the velocity field, L the typical horizontal length scale, and f
the Coriolis parameter, does not work well for studying spontaneous emission. This
is because flows capable of emitting waves are generally highly anisotropic and vary
with time so that it is difficult to determine U and L unambiguously. This problem
can be overcome by considering the Rossby number

RoLagr =
π

τ f
(35)

where τ denotes a typical Lagrangian time scale: the time it takes a particle to travel
trough a half-wavelength of the dominant pattern (e.g. McIntyre 2009). The particle
travel time, however, is often not easily available in a simulation, so that a more
practical proxy is the local Rossby number R defined by the ratio of relative vorticity
to the local Coriolis frequency f ,
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R =
|∇⊥h · uh |

| f |
. (36)

Averaging can be used to eliminate possible influence of short-term fluctuations on
R. Alternatively, R can be defined using the geostrophic velocity in (36).

A realistic simulation of the world ocean performedwith theMax-Planck-Institute
Ocean Model (MPIOM) at a horizontal resolution of 0.1◦ shows that the maximum
values of the local Rossby number R derived from the monthly mean of the velocity
field are about 0.15–0.25 in the Southern Ocean, about 0.3–0.4 in the Gulf Stream,
and about 0.1–0.25 in the Kuroshio Extension. Extremes of about 0.5 are found in
isolated spots in theGulf Stream. R decreases quicklywith increasing depth: the same
numerical simulations show that at about 300m depth, maximum values of R are
reduced to about 0.1–0.15 in the Southern Ocean, about 0.2–0.3 in the Gulf Stream,
and about 0.1–0.13 in the Kuroshio region. The flows outside the tropical oceans
are, apart from very few exceptions, characterized by a Rossby number smaller than
0.2–0.4. The smallness of R in the extratropical regions suggests that the flows there
are not far from balance and that their timescales are noticeably longer than those of
IGWs.

5.2 Linear filters

When the time scales of the mean flow and the IGWs are well separated, IGWs can
be identified by high-pass filtering the data. There is a variety of different filters
which can be used for this purpose. In the following, we shall explain the options and
potential pitfalls for accurate detection of IGWsgenerated by spontaneous imbalance.

The flow field in which spontaneous emission occurs contains at least two compo-
nents: the mean flow which emits the waves and varies predominantly at sub-inertial
frequencies, and the emitted inertia-gravity waves themselves which oscillate at
super-inertial frequencies. Generally, the sub-inertial variations are much stronger
than the super-inertial waves. Not all filters ensure that the strong sub-inertial vari-
ations are not leaked to the super-inertial frequency range and misinterpreted as
inertia-gravity waves. This can happen, for example, when using a running average
filter.

The running average filter is the simplest digital filter. Denoting the original
velocity time series by xt , the 2K + 1-point running average x̄t is given by

x̄t =
k=K∑
k=−K

ak xt+k (37)

with equal weights

ak =

{
1

2K+1 for |k | ≤ K ,

0 for |k | > K .
(38)
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Fig. 5 Response functions c(ω) of three running average low-pass filters with different filter
windows. The frequency axis is labeled in units of the sample frequency ωsample and shows
frequencies up to the Nyquist frequency ωsample/2.

The spectral density function of the filtered time series S̄ is related to the spectral
density function of the original time series S by

S̄(ω) = |c(ω)|2 S(ω) (39)

with frequency response function

c(ω) =
sin((2K + 1) πω)
(2K + 1) sin(πω)

. (40)

Fig. 5 shows c(ω) for a running average filter with K = 2, 3, and 7. The magnitude
of c(ω) is close to one at low frequencies and becomes small and oscillatory at high
frequencies, i.e., the filter acts as a low-pass filter. Further, c(0) = 1 and c(ω) = 0 at
frequencies ω = j/(2K + 1) for j = 1, . . . ,K , i.e., the filter leaves the zero frequency
component unchanged and completely filters out frequencies that are multiples of
1/(2K + 1). Thus, one would typically take the local inertial period as the window
length, so that variations at frequencies equal to an integer multiple of the local
inertial frequency are filtered out. In the residual time series

x ′t = xt − x̄t , (41)

variations at these high frequencies are fully retained and variations at the zero
frequency are completely removed. At all other frequencies, c(ω) is neither exactly
one nor exactly zero, making the running average filter inaccurate. In particular, at
frequencies close to zero, |c(ω)| < 1, so that parts of the sub-inertial variations are
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retained in x ′t . When the sub-inertial variations are strong, this contamination can be
significant.

Better results can be obtained by filtering directly in the frequency domain,
where the discrete Fourier transform is used to convert the time series from time
to frequency domain and back. This approach is generally accurate provided the
time series xt is periodic, which is generally not the case for a finite time series of
a system with a strong slowly varying component which imposes a trend onto the
finite-time window. In this case, the Fourier decomposition is inaccurate in the sense
that the spectral density at a frequency ω of the finite time series does not represent
the spectral density at the same frequency obtained from an infinite time series. This
type of bias can be corrected by de-trending and tapering (giving the beginning and
the end of a time series less weight) before taking the discrete Fourier transform
(see, e.g., von Storch and Zwiers 1999).

The difference between the two filters can be seen by comparing Fig. 3 with Fig. 4.
In each case, the filter is tuned to the local inertial period τi. Fig. 3 uses a spectral
filter with response function

c(ω) =

{
0 for ω < 1/τi ,

1 for ω ≥ 1/τi .
(42)

In addition, the time series was de-trended and taped using the split-cosine-bell taper
(von Storch and Zwiers, 1999) where the non-unit weights make up about 12% of
an hourly time series over a period of one month. Fig. 4 is based on the same data,
but with a running average filter of filter length τi and subsequent computation of
the residual (41). The two different filters lead to different results. In particular, the
super-inertial kinetic energy in the Southern Ocean is much weaker in Fig. 3 than in
Fig. 4. The stronger super-inertial kinetic energy seen with the running average filter
is a result of the contamination of the residual by the imperfect filtering of strong
low-frequency components. Thus, one should not use a running average filter for the
purpose of separating IGWs from eddying flows.

5.3 Optimal potential vorticity balance

In this section, we review the concept of optimal potential vorticity balance as intro-
duced by Viúdez and Dritschel (2004). In the following Section 5.4, we then present
a mathematical framework in which optimal balance can be understood systemati-
cally. It is our belief that the framework applies in much more general circumstances
and can be used for high-accuracy diagnostics and balanced initialization.

The dynamics of large-scale geophysical flow is, to a surprising degree, de-
termined by the evolution of a single scalar field, the potential vorticity q, alone
(McIntyre and Norton, 2000). Indeed, in many cases the full equations can be writ-
ten, equivalently, as a material transport equation for q augmented by additional
equations for the evolution of the “ageostrophic components” P. For example, for
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the rotating Boussinesq model, the components of P are the horizontal divergence
δ and the ageostrophic vorticity γ, see Section 2.2 in Franzke et al. (2019). For the
rotating shallow water equations, Section 2.1 shows how to split off a second-order
in time equation using ∂th as the imbalance variable.

In all of these cases, leading order balance is obtained by simply setting P =
0, but an optimally balanced flow will have small, but nonzero values for these
“ageostrophic” variables. Balance is then viewed as a mapping q 7→ P = Φ(q).
The functionΦ can be seen as defining a manifold in phase space parameterized by
potential vorticity. It is generally understood that a unique invariant slow manifold
does not exist except in trivial cases, but that it is possible to construct balance
manifolds which are almost invariant over very long intervals of time (Vanneste,
2013). The numerical task can now be described as follows. Given any potential
vorticity field q∗, numerically compute one image P∗ of the balance map in an
optimal way, where possible optimality considerations are discussed in Section 5.4
below.

We further require that for a state where P = 0 there exists a stationary “rest
state potential vorticity” qr. On the sphere or on the beta-plane, qr will only depend
on latitude. With η denoting the flow map, let us write x = η(a, t) to denote the
Eulerian position of the fluid particle initially at Lagrangian label coordinate a.
Material conservation of potential vorticity is then expressed as

q(η(a, t), t) = q0(a) . (43)

The central idea of optimal PV balance is to make the initial potential vorticity q0
slowly dependent on time by writing

q0(a, t) = qr(a) + ρ(t/T) qa(a) (44)

where qa is a Lagrangian description of the potential vorticity anomaly, ρ is a smooth,
monotonically increasing ramp function with ρ(0) = 0 and ρ(1) = 1, and T is the
ramp time which we think of as comparable to the time scale of the slow, balanced
motion. The introduction of an explicit dependence of q0 on t changes the equations
of motion, but a system in balance may remain approximately balanced so long as
the ramp is sufficiently slow, i.e., the ramp time T is sufficiently long. In fact, the
scale separation between the fast time scale and the ramp time is a small parameter
playing the same role as the scale separation between fast and slow time scales in
the asyptotic analysis of the problem Gottwald et al. (2017).

This leaves uswith the following task: solve themodified equations ofmotionwith
the temporal boundary conditions P(0) = 0 and q(T) = q∗, then define p∗ = P(T).
Figure 6 shows a sketch of the situation. For every fixed t, the balance manifold is
illustrated as a one-dimensional curve; the manifold itself is time dependent. At the
start of the ramp when t = 0, the balance manifold is exact and trivial; we know
how to explicitly balance the system. At the final time t = T , the balance manifold
is only approximate and nontrivial. A trajectory from t = 0 to t = T which reaches
the imposed potential vorticity q∗ at the end of the ramp, shown in red in Figure 6,
remains approximately balanced so long as the change of the balancemanifold in time
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Fig. 6 Sketch of the ramping procedure in extended phase space.

is adiabatic. The quality of balance for the final state will be affected by the choice
of ramp function, the choice of the ramp time T , and the scale separation between
balanced and unbalanced motion. We will comment on the conjectured interplay of
these parameters in the context of a simple model for balance in Section 5.4 below.

To use optimal potential vorticity balance in practice, two further problems need
to be overcome. First, what is ramped in (44) is the initial, i.e. Lagrangian, potential
vorticity q0. The dependence of theEulerian potential vorticity on q0, however, is only
straightforward in a semi-Lagrangian setting such as the CASL method by Dritschel
and co-workers (Dritschel et al., 1999) or one of its variants. Second, the formulation
of the problem as stated here is a boundary value problem in time. As such, a direct
implementation requires specialized code. Viúdez and Dritschel (2004), however,
have proposed an iterative scheme that can be performed with only an evolutionary
code: Start at t = T with q(T) = q∗ and P(T) = 0 and integrate backward to t = 0.
At t = 0, the solution will be generally imbalanced, so force the solution back to
balance by resetting P(0) = 0, keeping q(0) unchanged. Now integrate forward to
t = T . At t = T , the solution will still be approximately balanced, but in general
q(T) , q∗. Now reset q(T) = q∗, keeping P(T) unchanged. Repeat until the iteration
converges. In that case, the fixed point of the iteration is, by construction, a solution
to the temporal boundary value problem as outlined earlier. Viúdez and Dritschel
(2004) report fast convergence in their numerical experiments.

5.4 A simple model for optimal balance

A simple finite dimensional model for balance is the Hamilton system
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Fig. 7 Numerical test for a linear model problem. Shown is the balancing error as a function of the
ramp time for ramp functions with different orders of vanishing at the end points of the ramp.

Ûq = p , (45a)
ε Ûp = Jp − ∇V(q) , (45b)

where q(t) and p(t) are vectors of even dimension, V(q) is a convex potential, and

J =
(
0 −I
I 0

)
(46)

is the canonical symplectic matrix. The corresponding ramped system, in this case,
reads

Ûq = p , (47a)
ε Ûp = Jp − ρ(t/T) ∇V(q) . (47b)

We solve (47) as a boundary value problem where we impose that at t = 0, the
system is on the trivial slow manifold and at t = T the position variables take some
prescribed value q∗. Thus, (47) is augmented with boundary conditions

p(0) = 0 and q(T) = q∗ . (48)

This system can be completely and rigorously analyzed by Hamiltonian normal form
theory (Cotter and Reich, 2006; Cotter, 2013). In particular, it can be shown that the
drift of the ramped trajectory away from the family of approximate balancemanifolds
M(t) is smaller than any algebraic order in ε for fixed ramp time T . When the ramp
function ρ is analytic with a uniform lower bound on the radius of analyticity along
the entire ramp, the drift is even exponentially small. Similarly, it can be shown that
for fixed ε , the drift off the manifold decreases as T becomes large.
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Fig. 8 The same data as shown in Figure 7 on a semi-log scale. The exponential regime of the error
behavior can be seen as a straight line.

However, there is a second source of error besides the drift. The asymptotic
series defining the family of manifoldsM(t) for the ramped system differs from the
asymptotic series for the trivial balance manifold at t = 0 and, similarly, it differs
from the asymptotic series for the balance relation of the original system (45) by
terms containing derivatives of ρ.More precisely,O(εn+1)-accuracy of the procedure
requires the first n derivatives of ρ to vanish at the temporal end points. This excludes
uniformly analytic ramp functions. Yet, it is still possible to get exponential bounds,
albeit with a smaller power of ε in the exponent; see Gottwald et al. (2017).

The behavior of the optimal balance procedure can be demonstrated most easily
in the linear case. In this case, for a frozen value of the ramping parameter, the slow
manifold is an exact invariant and can be computed by diagonalization of the full
system matrix. Figure 7 shows the quality of balance achieved by the method for the
simple potential V(q) = 1

2 |q |
2 and different ramp functions of the type

ρ(θ) =
f (θ)

f (θ) + f (1 − θ)
(49)

for f (θ) = θ2 (“quadratic”), f (θ) = θ4 (“quartic”), and f (θ) = exp(−1/θ) (“ex-
ponential”). The balance error is defined as the distance of p(T) as computed via
solving the boundary value problem of the ramped system to the slow eigenspace of
the full system (45) computed by exact diagonalization.

The behavior for large ramp times (corresponding to good adiabatic invariance)
is dominated by the error committed at the start and end point of the ramp. It shows
the expected power law scaling in T , given by the order of vanishing of the ramp
function at the end points. The behavior for small ramp times is dominated by the
deviation from adiabatic invariance and shows exponential behavior. This can be



26 Jin-Song von Storch, Gualtiero Badin and Marcel Oliver

clearly seen from Figure 8 where the same data is plotted semi-logarithmically. The
cut-over point moves to larger values of T as the order of vanishing of the ramp at
the end points is increased.

The results sketched above indicate that optimal balance can provide balanced
flow fields which are almost as accurate as an optimally truncated asymptotic balance
relation. While obtaining the latter is completely unfeasible in practice, optimal
balance as a numerical technique is an easy and computationally feasible procedure.
While it is more expensive than a simple evaluation of a low order balance relation,
it is not excessively expensive. Thus, in practical terms optimal balance may be the
only accessible notion of balance that is accurate enough so that it can serve as the
reference definition of a balanced state against which other, cheaper, diagnostics can
be judged.

6 High-resolution ocean general circulation models as a novel
tool for studying spontaneous emission

So far, modeling studies on spontaneous imbalance have been concentrated on flows
with idealized or simplified configurations. Even though great progress has been
made in understanding spontaneous imbalance as a phenomenon of geophysical flu-
ids (see discussion and references Section 2) and attempts have been made to make
the considered configurations to resemble the real atmospheric or oceanic condi-
tions, modeling studies using idealized configurations are always challenged by the
question of whether and to what extent spontaneous imbalance in the considered flow
configuration matters in reality. These questions can be answered by considering ob-
servations with high spatial and temporal resolution. High resolution is essential for
detecting spontaneous imbalance in the real ocean. As high-resolution observations
are often not available, it is natural to use global general circulation models (GCMs)
capable of realistically simulating the global ocean.

For a long time, ocean GCMs have not been suitable for studying spontaneous
imbalance. State of the art OGCMs, such as those contributing to the last IPCC
report, are too coarse to resolve meso-scale eddies. Without meso-scale eddies,
a coarse OGCMs is unable to simulate realistic vortical flows capable of emitting
waves.Due to the increase in computing power, global (or near-global) eddy resolving
or eddy permitting simulations have become possible (e.g. Masumoto et al., 2004;
Maltrud and McClean, 2005; Lee et al., 2007; Maltrud et al., 2010; Griffies et al.,
2015). At the Max-Planck-Institute, high-resolution ocean modeling was initiated by
the German consortium project STORM. The 0.1◦ tripolar version of the MPIOM
developed within the project simulates a considerable bulk of mesoscale eddies, with
eddy characteristics comparable to those derived fromobservations (von Storch et al.,
2012; Li and von Storch, 2013; Li et al., 2015). This is an important prerequisite for
studying the spontaneous wave emission by eddying flows in a realistic setting.

An essential feature of the eddying ocean simulated by the 0.1◦ MPIOM is
horizontally axial flows. These flows follow a bundle of isobars in a horizontal
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Fig. 9 Snapshots of high-pass filtered vertical velocities (color shadings) and dynamically relevant
pressure (contours) identified from a 10◦ simulation performed with MPIOM. Units are 10−4 m/s
for vertical velocity and 10−1 bar for pressure.

plane, such as those indicated by the black lines in Fig. 9. The isobars are curved,
though not closed, and run parallel to each other. Flow following isobars is consistent
with the idea that the eddying flows are near geostrophic balance. The shadings in
Fig. 9 show a snapshot of vertical velocity containing only super-inertial fluctuations,
indicating gravity wave trains. The wave trains are concentrated along axial flows
with the wave crests being perpendicular to the flow. Their vertical structures are
comparable to those of low modes internal waves. They propagate along the flow as
if they were captured.

These wave trains can result from the refraction of waves by the axial flow.
Following equation 10, the effect of the refraction depends on the flow gradient
tensor ∇u along the path of the wave train. For a non-axial flow, ∇u can be quite
complicated so that kh is generally not in the direction of uh. For gravity waves, kh is
in the direction of the horizontal component of the intrinsic group velocity. For these
waves, the wave trains tend to move away from the given flow, making refraction by
a particular gradient tensor∇u difficult. An axial flow has the property that the shear
of the flow vanishes along the core. This makes ∇u to take an extremely simple
form for non-divergent and horizontally axial flows. With such a ∇u, waves whose
wavenumber vector does not have a transverse-flow component initially will stay in
the core and eventually becomes refracted by the negative stretching rate such that
their along-flow wavenumber increases exponentially.

Fig. 9 provides a first indication thatwaves can be emitted and refracted by eddying
flows in a realistic setting. Many questions are still unanswered. For instance, the
0.1◦ MPIOM-simulation discussed produces super-inertial kinetic energy not only
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in mid-latitude oceans but also, with much greater strength, in the sub-tropical and
tropical ocean (see Fig. 3). It is not clear whether these super-inertial fluctuations
represent waves with properties similar to those found in the mid-latitude oceans
shown in Fig. 9, what is the relation of these waves to the background flows that are
characterized by increasingly larger Rossby number towards the equator, and what
is the role of these super-inertial fluctuations for large-scale subtropical and tropical
flows.

Using high-resolution OGCMs as a tool for studying spontaneous imbalance
requires further improvement of the models. In particular, a transition from primitive
equation models (which resolve only long inertia-gravity waves) to non-hydrostatic
models needs to be carried out to allow more complete studies on the role of
spontaneous imbalance for flows in a realistic ocean.

To achieve a better understanding, it is worthwhile to combine a complex high-
resolution OGCM with simpler conceptual models. For instance, one can use a
high-resolution OGCM-simulation as a guide for identifying the typical flow config-
urations likely to occur in the real ocean and study the spontaneous imbalance of these
particular flow configurations in greater details using limited-area high-resolution
setups. These typical flow configurations can also guide theoretical studies using,
for example, matched asymptotic expansions.

7 Discussion

In this chapter we have reviewed selected topics on the emission and capture of
IGWs by nearly geostrophic flow. We further raised the question regarding their role
as one of the routes to dissipation in the global ocean. To answer this question in
general, we still need a more complete understanding of the underlying mechanisms
and a careful assessment of different factors, including (i) a rigorous mathematical
analysis of IGWs diagnostics, as well as improved diagnostics; (ii) scaling laws or
appropriate alternative characterizations for the emission of IGWs, especially from
frontal regions; and (iii) a quantitative assessment of IGWs emission and capture in
realistic ocean GCMs.

Regarding point (i), one set of open questions concerns the use of balance rela-
tions, which may be interpreted as spatial filters, in addition or as an alternative time
filtering for quantifying spontaneous imbalance. In particular, we have to understand
whether some types of balance relations, e.g. semigeostrophic vs. quasigeostrophic
balance or variational vs. nonvariational constructions are advantageous in a diag-
nostic setting. Moreover, do higher order relations justify the added complexity? Do
the diagnostics work consistently across all relevant oceanic (and eventually also
atmospheric) regimes? How do the diagnostics transition from mid-latitude to equa-
torial balance, from weak to strong stratification, or behave near boundaries? Some
of these questions are discussed in more detail in Franzke et al. (2019).

The second set of questions concerns the use of optimal balance for diagnostic
purposes. While the analysis of optimal balance is well understood in the context
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of the finite dimensional model presented in Section 5.4, no rigorous results are yet
available to cover even the RSW equations or any of the more complex models. To
increase the applicability of optimal balance to awide range ofmodels, it is important
to implement the ramp on top of a standard Eulerian formulation of the equations,
e.g., by multiplying all nonlinear terms with the ramp function. To our knowledge,
this has not been tested, but seems promising and within the framework outlined
for the finite dimensional model problem in Section 5.4. Once this is achieved, we
believe that the method has considerable potential for applications to the real ocean
as a detailed understanding of the precise scalings is not necessary to apply the
method so long as it is possible to adiabatically ramp the system into a simpler
model for which balance can be unambiguously defined.

Regarding point (ii), a major issue is the necessity of some scale separation to
be able to define any splitting into mean flow and IGW activity. This problem was
raised by Saujani and Shepherd (2002) (see also Ford et al. 2002), but it clearly needs
further studies in order to understand what happens when scale separation exists in
large parts of the system, but is not uniform in space and time.

Regarding point (iii), studying IGW emission and capture using realistic OGCMs
is novel but can be very difficult. This is because a high-resolution realistic OGCM
generally resolves a much larger range of motions than a model configured for a
specific flow configuration does. To be able to interpret a GCM output, the need for
good diagnostics is particularly acute because of the different flow regimes present
and the fact that we are starting to resolve IGWs.

Apart from diagnostics, theoretical considerations, such as those based on ray
equations, are indispensable. They are needed to interpret the filtered output and
to ensure that the output has proper physical meaning and does not result from nu-
merical artifacts. In general, a number of questions are still open and two of these
questions are particularly important and should be tackled first. One concerns the
spontaneous imbalance in the subtropical and tropical ocean, which seems to pro-
duce much stronger super-inertial kinetic energy than that in mid-latitude oceans
according to Fig. 3. The other question concerns the difference in waves sponta-
neously emitted in different flow regimes, for instance those in quasi-balanced axial
flows, compared with those in a frontal system. Even though one difference, namely
the difference in wave intensity, has been identified by theoretical considerations
(Vanneste, 2008, 2013), the long time behavior of waves emitted in different flow
regimes and the resulting implications for the flows in different regimes has not
been studied systematically. Both questions are crucial for understanding the role of
spontaneous imbalance for the real ocean.

Progress on these questions will provide a deeper understanding of spontaneous
emission and subsequent capture of IGWs, and lead to an assessment of the impor-
tance of the route to energy dissipation via wave emission. Eventually, this may lead
to better parameterizations of IGWs in coarse-resolution models.
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