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Abstract. We consider the linear Klein–Gordon equation in one spatial di-
mension with periodic boundary conditions in the non-relativistic limit where

ε = ~2/(mc2) tends to zero. It is classical that the equation is well posed,

for example, in the sense of possessing a continuous semiflow into spaces
Hs+1 ×Hs for wave function and momentum, respectivly. In this paper, we

iteratively contruct a family of bounded operators FN
slow : Hs+1 → Hs whose

graphs are O(εN )-invariant subspaces under the Klein–Gordon evolution for
O(1) times. Contrary to a naive asymptotic series, there is no “loss of deriva-

tives” in the iterative step, i.e., the Sobolev index s can be chosen independent

of N . This is achieved by solving an operator Sylvester equation at each step
of the construction.

1. Introduction

We study the linear Klein–Gordon equation with periodic boundary conditions
in the form

ε ∂2t u− i ∂tu−∆u = Mu , (1)

where u : [0, T ] × T → C, ∆u = ∂2xu denotes the Laplacian, and M is a linear
operator, bounded on Hs(T) and on Hs+1(T) for some s ∈ R. In the interesting
cases, M does not commute with the Laplacian.

Equation (1) is obtained from the classical Klein–Gordon equation for the wave
function ψ of a single spinless relativistic particle of mass m,

~2

2mc2
∂2t ψ −

~2

2m
∆ψ +

(
mc2

2
−M

)
ψ = 0 , (2)

via the rotating wave ansatz

ψ = u exp(imc2t/~) , (3)

where ~ is the Planck constant and c is the speed of light. Chossing units such that
m and ~ take value one and setting ε = 1/(2c2), we note that ε → 0 corresponds
to the non-relativistic limit c→∞.

In the following, we shall write (1) as a first order system of evolution equations

∂tu = v , (4a)

ε ∂tv = i v + ∆u+Mu . (4b)
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This system has a formal resemblance with the finite-dimensional two-scale fast-
slow system

q̇ = p , (5a)

ε ṗ = Jp−∇V (q) , (5b)

where q : [0, T ] → R2d is the vector of positions, p is the vector of corresponding
momenta, J is a symplectic matrix, and V is a smooth potential. In this setting,
there is an asymptotic separation of time scales: the linearized dynamics has d
“slow” eigenvalues of magnitudeO(1) and d “fast” eigenvalues of magnitudeO(ε−1).
It is straightforward to construct an almost invariant slow manifold to O(εN ), and
it is well known how to achieve invariance up to exponentially small terms [2, 8, 10].
Similar results are possible with an infinite number of fast degrees of freedom [7].

In the direct construction of an O(εN ) slow manifold p = FNslow(q), one seeks an
asymptotic series

FNslow(q) =

N∑
k=0

fk(q) εk , (6)

where the coefficient vector fields fk are determined by the condition that the
evolution equation for the fast residual component w = p − FNslow(q) is of order
O(εN+1). This will directly lead to a shadowing result of the form

sup
t≤T
‖q(t)−Q(t)‖ ≤ c εN+1 , (7)

where q solves (5) with prepared initial data p0 = FNslow(q0) and Q solves the slow
equation

Q̇ = FNslow(Q) (8)

with Q(0) = q0.
The situation for the Klein–Gordon equation is different, even in the linear case.

Since the Laplacian is unbounded, there is no spectral gap between the families,
parameterized by ε, of eigenvalues that remain bounded and those that diverge as
ε → 0. On the level of the asymptotic construction, we observe that an iterative
construction of the slow vector field as, for example, described in [3], will involve
composition with the Laplacian, i.e., will lead to a loss of two derivatives in Sobolev
space per iteration. This loss of derivatives is observed in related perturbation
problems, e.g. [9, 12].

In this paper, we show, focusing on the linear Klein–Gordon equation (1), that
it is possible to construct an infinite-dimensional analog of the slow manifold in the
example above: we construct a linear “slow” subspace, defined as the graph of a
linear operator from Hs+1 into Hs, with the property that (i) it is invariant up to
terms of O(εN+1) in the Hs topology and (ii) it emerges as a regular perturbation
expansion in the functional setting of the Schrödinger equation which is the formal
limit for ε→ 0 of the Klein–Gordon equation (1).

Our result is a proof-of-concept, motivated by the question whether variational
constructions of slow manifolds, as have been studied in the finite-dimensional case
in [3], can be justified in the context of the linear or the semi-linear Klein–Gordon
equation. The direct construction here leads to a functional integral representation
of the coefficient operators defining the “slow” subspace, thus cannot be computed
practically. The variational construction, on the other hand, leads to vector fields
which are more directly computable, but whose remainder terms are hard to express.
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The approach of [3] uses the direct construction as a stepping stone to characterize
the remainder of the variational slow vector field. Thus, the present result is an
indication that a similar proof might be possible in infinite dimensions as well, even
though additional analytical obstacles need to be overcome.

The remainder of the paper is structured as follows. We next describe the formal
construction of the slow subspace. We present order conditions which, to avoid “loss
of derivatives,” are formulated as a sequence of operator Sylvester equations. In
Section 3, we provide the solution theory for these operator equations. In the final
Section 4, we formulate the main theorem, a shadowing estimate analogous to (7).

2. Formal construction of the “slow” vector field

In this section, we detail the formal construction of the family of vector fields
FNslow which defines the almost invariant slow subspace. In order to avoid loss of
derivatives, we make two nontrivial provisions. First, we use the exact splitting
of the subspaces associated with the unbounded part of the equation, so that this
contribution is included in description of the slow subspace to all orders. Second, we
include certain next-order contributions into the previous-order terms so that the
order conditions will involve inverses rather than direct right-hand contributions
of unbounded operators.

To begin, we note that (4) with M = 0 is easily block-diagonalized. Its eigenop-
erators must satisfy the characteristic equation

εL2
± − iL± −∆ = 0 , (9)

so that

L± = i
1±
√

1− 4ε∆

2ε
. (10)

Clearly, there is no spectral gap between the two eigenoperators. However,

lim
ε→0

L−(ε)→ i ∆ (11)

in the strong operator topology of Hs whereas the sequence L+(ε)u diverges for
any nonzero u ∈ Hs. In this sense, we shall speak of the subspace of phase space
associated with L− as the slow subspace and the subspace associated with L+ as
the fast subspace.

For the full system (4), we seek an approximate description of the slow subspace
as the graph of an operator of the form L− + FNslow, where

FNslow =

N∑
k=0

Fk (12)

and {Fk} is a sequence of bounded operators on Hs. In other words, we keep the
unbounded operator contribution to the slow motion to all orders and only seek
for corrections related to M 6= 0 in an iterative fashion. Correspondingly, the fast
subspace contribution is sought in the form

w = v − L−u− FN+1
slow u . (13)
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Then, differentiating (13) in time and invoking the characteristic equation (9) to
simplify the expression, we find that (4) can be written as

∂tu = L−u+ FNslowu+ εN+1 FN+1u+ w , (14a)

∂tw =

(
i

ε
− L− − FN+1

slow

)
w +

1

ε

(
M + iFN+1

slow

)
u

−
(
L−F

N+1
slow + FN+1

slow L− + FN+1
slow FN+1

slow

)
u . (14b)

The goal is is to determine Fk order by order such that the second and third term
on the right of (14b) can be eliminated up to an O(εN+1)−remainder. The slow
limit equation will then be given by

∂tU = L−U + FNslowU , (15)

formally valid up to terms of O(εN+1). Provided we can show that the remainder
is an Hs-bounded operator, the difference between solutions of (15) and the full
system can be controlled via simple energy estimates.

We note that the obvious procedure—set F0 = iM and choose each next order Fk
to eliminate the contribution from the final line of (14b) coming in at this order—
will still lead to unbounded operators Fk because L− itself is only bounded as an
operator from Hs+1 into Hs. Thus, we still lose one derivative per interation of the
scheme via the first two terms in the last pair of parentheses of (14b). However,
this loss of derivatives could be avoided if it is possible to account for these two
terms as part of the condition which determines the slow vector field at the previous
order. Noting that

i− εL− = εL+ , (16)

we see that we must require, at O(ε0), that

M + εL+F0 − ε F0L− = 0 . (17a)

Likewise, at order O(εk) for k ≥ 0, we must require that

εL+Fk − ε FkL− − coef(FN+1
slow FN+1

slow , εk) = 0 . (17b)

These modified order conditions require solving an operator Sylvester equation at
each step. In the following Section 3, we shall show that the solution to (17) is
given by

Fk =
i

π

∫ ∞
0

√
t (t− ε2 L2

+)−1Mk (t− ε2 L2
−)−1 dt (18a)

where M0 = M and, for k ≥ 1,

Mk = −
∑

j+l=k−1

Fj Fl . (18b)

Moreover, we find that (18) defines a family of operators which is uniformly bounded
with respect to ε on Hs. This property is the essential prerequisite for our main
result in Section 4.
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3. The operator equation AX +XB = Y

In this section we will establish an integral representation for the solution of the
operator equation

AX +XB = Y , (19)

known as Sylvester’s equation, on Hs(T). The formal construction follows the
approach of [1] for a generalized matrix-Sylvester equation in finite dimensions.
Here, however, we face additional difficulties due to the fact that our A and B are
unbounded operators on a Hilbert space.

We begin by reviewing some facts about operators on an abstract Hilbert space
H. We write L(H) to denote the space of bounded operators on H. For 0 < r < 1,
we define

Ωr = {z ∈ C\{0} : − rπ < Arg z < rπ} . (20)

A possibly unbounded linear operator E : D(E) ⊂ H → H is strictly accretive if
there exists α > 0 such that

Re〈Ex, x〉 ≥ α ‖x‖2 (21)

for all x ∈ D(E); see, e.g., [6].

Proposition 1. If A ∈ L(H) is normal with σ(A) ⊂ Ω 1
2
, then A is strictly accre-

tive. Moreover, there exist δ > 0 such that for all E ∈ L(H) with ‖A− E‖ < δ, E
is also strictly accretive.

Proof. Since A is a normal bounded operator, the closure of its numerical range

W (A) = {〈Ax, x〉 : x ∈ H, ‖x‖ = 1} (22)

is the smallest convex set containing σ(A); see, e.g., [4]. As σ(A) itself is closed
and contained in Ω 1

2
, dist(W (A), iR) > 0. In other words, there exists α > 0 such

that

Re〈Ax, x〉 ≥ α ‖x‖2 (23)

for all x ∈ H, i.e., A is strictly accretive. Now suppose that there exist sequences
En ∈ L(H) and xn ∈ H with ‖En −A‖ < 1

n and ‖xn‖ = 1 such that

Re〈Enxn, xn〉 <
α

2
. (24)

Then

Re〈(En −A)xn, xn〉+ Re〈Axn, xn〉 <
α

2
, (25)

so that

lim inf
n→∞

Re〈Axn, xn〉 ≤
α

2
, (26)

which contradicts (23). �

Theorem 2 (Kato [6]). Let E : D(E) ⊂ H → H be strictly accretive. Then there

exists a unique strictly accretive operator E
1
2 defined on D(E) such that (E

1
2 )2 = E

and

E
1
2u =

1

π

∫ ∞
0

t−
1
2 E (t+ E)−1 udt (27)

for all u ∈ D(E).

Within this framework, we can prove a first solution theorem for Sylvester’s
equation on a Hilbert space, at this point for bounded normal operators A and B.
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Theorem 3. Let A,B, Y ∈ L(H) such that A and B are normal with σ(A) ⊂ Ω 1
4

and σ(B) ⊂ cl Ω 1
4
. Then

X =
1

π

∫ ∞
0

t
1
2 (t+A2)−1 Y (t+B2)−1 dt (28)

defines a bounded operator on H which solves the operator Sylvester equation

AX +XB = Y . (29)

Remark 4. More generally, Theorem 3 remains true if one of the operators A and
B has a spectrum strictly in the interior of Ω 1

4
. The spectrum of the other operator

may, in particular, include zero.

Proof. Following [1], let ϕ(A) = A2. By Theorem 2, its inverse is given by

ψ(E) ≡ E 1
2 =

1

π

∫ ∞
0

t−
1
2 E (t+ E)−1 dt . (30)

Proposition 1 asserts that this expression is well-defined on a neighborhood of
every normal opearator E with σ(E) ⊂ Ω 1

2
. In particular, it is possible to define

the Fréchet derivative of (30).
The derivative of ϕ at A is a linear map on L(H) whose action is given by

Dϕ(A)X = AX +XA . (31)

Let us first consider the case when B = A. In this case, equation (29) takes the
form

Dϕ(A)X = Y (32)

and its solution can be found by inverting Dϕ(A). Noting that Dϕ(A)−1 =
Dψ(ϕ(A)) and differentiating (30) under the integral sign, we obtain

Dψ(E)Y =
1

π

∫ ∞
0

t
1
2 (t+ E)−1 Y (t+ E)−1 dt . (33)

(To justify this operation, we note that the Fréchet derivative can be seen as a
closed operator. A lemma of Hille [5] asserts that closed operators can be moved
inside a Bochner integral.) Thus, setting E = ϕ(A) so that σ(E) ⊂ Ω 1

2
, we obtain

X = Dψ(AN )Y =
1

π

∫ ∞
0

t
1
2 (t+A2)−1 Y (t+A2)−1 dt . (34)

We next consider a perturbed version of the general case. Let γ > 0 and consider
the operator equation

AXγ +Xγ Bγ = Y (35)

where the shifted operator Bγ ≡ B + γI has its spectrum contained in Ω 1
4
. We set

Ãγ =

(
A 0
0 Bγ

)
, Ỹ =

(
0 Y
0 0

)
and X̃γ =

(
0 Xγ

0 0

)
. (36)

Solving

Ãγ X̃γ + X̃γ Ãγ = Ỹ (37)

on H×H is equivalent to solving (35) on H. Since σ(Ã) = σ(A)∪σ(Bγ) ⊂ Ω 1
4
, we

can apply the result from the previous step: The solution X̃γ is given by

X̃γ =
1

π

∫ ∞
0

t
1
2 (t+ Ã2

γ)−1 Ỹ (t+ Ã2
γ)−1 dt (38)
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so that

Xγ =
1

π

∫ ∞
0

t
1
2 (t+A2)−1 Y (t+B2

γ)−1 dt . (39)

We finally consider the limit γ → 0. Since

‖t 1
2 (t+A2)−1 Y (t+B2

γ)−1‖ ≤ t 1
2

1

t+ α

1

t
‖Y ‖ , (40)

where α > 0 is a lower bound on the spectrum of A2 so that the right hand side
is integrable on [0,∞), the dominated convergence theorem for Bochner integrals
applies (see, e.g., [11]). This proves that Xγ → X in L(H), where X is given by
(28). Moreover,

AXγ +Xγ Bγ → AX +XB (41)

in L(H), so that X solves (29). �

We now formulate the solution theorem for the case when A and B are un-
bounded operators. There are two differences. First, we need to require that Y is
bounded on H and D(A). Second, we need to have well-defined spectral projec-
tions of A and B that preserve their resolvent estimates. For simplicity, we state
the result in the concrete context where Y is one of the Mk from Section 2 so that
the latter consideration is trivial; more general statements are possible.

Proposition 5. Given Z ∈ L(Hs) with s ∈ R,

X =
i

π

∫ ∞
0

t
1
2 (t− ε2L2

+)−1 Z (t− ε2L2
−)−1 dt (42)

defines a family of linear operators on Hs, uniformly bounded with respect to ε. If,
in addition, Z ∈ L(Hs+1), X solves the operator Sylvester equation

εL+X − εXL− + Z = 0 . (43)

Proof. We set A = −εiL+ > 0, B = εiL− ≥ 0, and Y = iZ. Clearly, A,B ∈
L(Hs+1, Hs); the two operators are self-adjoint, diagonal in the Fourier represen-
tation, and satisfy, for t > 0, the resolvent estimates

‖(t+A2)−1‖L(Hs) ≤
1

1 + t
and ‖(t+B2)−1‖L(Hs) ≤

1

t
(44)

independent of s and ε. Hence,

‖t 1
2 (t+A2)−1 Y (t+B2)−1‖L(Hs) ≤ t

1
2

1

1 + t

1

t
‖Y ‖L(Hs) , (45)

so that (42) defines a family of uniformly bounded linear operators on Hs.
For k ∈ N∗, let Pk denote the spectral projector onto [0, k] and set Qk = I −Pk.

Then the operators Ak = PkA+QkI and Bk = PkB+QkI satisfy estimates of the
form (44) independent of k. Now assuming that, in addition, Y ∈ L(Hs+1),

Xk =
1

π

∫ ∞
0

t
1
2 (t+A2

k)−1 Y (t+B2
k)−1 dt (46)

is also well-defined and bounded independent of k and ε as a family of linear oper-
ators on Hr for r ∈ {s, s+ 1}. Moreover,

(t+A2
k)−1 → (t+A2)−1 and (t+B2

k)−1 → (t+B2)−1 (47)



8 HAIDAR MOHAMAD AND MARCEL OLIVER

in the strong operator topology on Hr, pointwise for t > 0. Thus, Xk → X, also
in the strong operator topology on Hr. Finally, we know from Theorem 3 that Xk

solves

AkXk +XkBk = Y . (48)

Thus, for u ∈ Hs+1, noting that the spectral projectors converge in the strong
operator topology, we have

‖(AkXk −AX)u‖s = ‖Ak (Xk −X)u+ (Ak −A)Xu‖s
≤ ‖Ak‖L(Hs+1,Hs) ‖(Xk −X)u‖s+1 + ‖(Ak −A)Xu‖s
→ 0 (49)

and

‖(XkBk −XB)u‖s = ‖Xk(Bk −B)u+ (Xk −X)Bu‖s
≤ ‖Xk‖L(Hs) ‖(Bk −B)u‖s + ‖(Xk −X)Bu‖s
→ 0 . (50)

This proves that

AX +XB = Y , (51)

initially as a linear operator with domain Hs+1 and, extending by continuity, also
on Hs. We finally note that (51) is equivalent to (43). �

Corollary 6. Suppose M ∈ L(Hs) for some s ∈ R. Then each of the Fk, re-
cursively defined in (18), is bounded in Hs independent of ε. If, in addition,
M ∈ L(Hs+1), Fk satisfies the order condition (17).

Proof. Each of the order conditions is in the form of the Sylvester equation (43)
with Mk in place of Z. Thus, the claim is asserted by Proposition 5 provided the
Mk are bounded operators on Hs and Hs+1. For k = 0 this holds by assumption.
For k ≥ 1, we note that the recursion (18b) maintains this property. �

4. Main theorem

Theorem 7. Suppose M ∈ L(Hs) ∩ L(Hs+1) and u0 ∈ Hs+1(T) for some s ∈ R.

Fix N ∈ N0 and let FN+1
slow be defined by the recursion (18). Then there exist a

unique solution u ∈ C([0,∞), Hs+1) to the Klein–Gordon equation (4) with pre-
pared initial data u(0) = u0 and v(0) = L−u0 + FNslowu0 and a unique solution
U ∈ C([0,∞), Hs+1) to the slow equation (15) with initial data U(0) = u0. These
solutions are bounded in L∞([0, T ];Hs+1) for any fixed T > 0 independent of ε.

Moreover, for every T > 0 there is a constant c indepent of ε such that

sup
0≤t≤T

‖u(t)− U(t)‖s ≤ c εN+1 . (52)

Proof. Since Corollary 6 asserts that FNslow ∈ L(Hs+1) with uniform bounds in ε, ex-
istence and uniqueness of solutions follow by standard semigroup theory. Moreover,
again by Corollary 6, the Fk satisfy the order conditions (17) so that, continuing
the argument from (14),

∂tw =

(
i

ε
− L− − FN+1

slow

)
w + εN+1RNu (53)
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with remainder operator RN ∈ L(Hs) given by

RN = −
2N+2∑
k=N+1

εk−N−1
∑
j+l=k

Fj Fl . (54)

Taking the Hs inner product of (53) with w, we obtain

1

2

d

dt
‖w‖2s = Re〈FN+1

slow w + εN+1RNu,w〉 ≤ c1 ‖w‖2s + c2 ‖u‖s ‖w‖ ε2N+2 . (55)

We note that the initial condition ensures that w(0) = O(εN+1), so that w will
remain O(εN+1) in Hs for any finite interval of time. Finally, taking the difference
between (14a) and (15), we obtain

∂t(u− U) = L−(u− U) + FNslow(u− U) + w + εN+1 FN+1u . (56)

As L− generates a unitary semigroup, a standard energy estimate completes the
proof. �

Remark 8. In the typical case where M is defined by multiplication with a potential
φ ∈ Hs, the assumptions of the theorem are satisfied for any s > 1

2 due to the
Sobolev algebra property of these spaces.
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