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Abstract. We analyze the method of optimal balance which was introduced

by Viúdez and Dritschel (J. Fluid Mech. 521, 2004, pp. 343–352) to provide
balanced initializations for two-dimensional and three-dimensional geophysical

flows, here in the simpler context of a finite dimensional Hamiltonian two-scale

system with strong gyroscopic forces. It is well known that when the potential
is analytic, such systems have an approximate slow manifold that is defined

up to terms that are exponentially small with respect to the scale separation

parameter. The method of optimal balance relies on the observation that the
approximate slow manifold remains an adiabatic invariant under slow deforma-

tions of the nonlinear interactions. The method is formulated as a boundary

value problem for a homotopic deformation of the system from a linear regime,
where the slow-fast splitting is known exactly, to the full nonlinear regime.

We show that, providing the ramp function which defines the homotopy is of
Gevrey class 2 and satisfies vanishing conditions to all orders at the temporal

end points, the solution of the optimal balance boundary value problem yields

a point on the approximate slow manifold that is exponentially close to the
approximation to the slow manifold via exponential asymptotics, albeit with a

smaller power of the small parameter in the exponent. In general, the order of

accuracy of optimal balance is limited by the order of vanishing of derivatives
of the ramp function at the temporal end points. We also give a numerical

demonstration of the efficacy of optimal balance, showing the dependence of

accuracy on the ramp time and the ramp function.

1. Introduction

Nonlinear Hamiltonian two-scale systems with a single fast frequency possess an
approximate slow manifold: a region in phase space characterized by smallness of
an adiabatically invariant “fast energy”. A trajectory near the approximate slow
manifold will stay near it for a long period of time—often exponentially long with
respect to the scale separation parameter under suitable assumptions (see, e.g.,
[15, 20]). It is important to stress that, despite the language used, this phase space
region is not a manifold in any rigorous sense (except in trivial cases such as linear
ODEs). Rather, it is described by a generally diverging asymptotic series [25].

An explicit description of an approximate slow manifold is usually only practical
to a low fixed order of asymptotics because the number of terms grows exponen-
tially with order. Optimal truncation, a powerful theoretical tool, e.g., for proving
almost-invariance over exponentially long times, cannot be implemented in a com-
putational model. It is, however, possible to numerically compute single points
on the approximate manifold with an accuracy that is nearly as good as optimal
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truncation. This procedure, which we refer to as optimal balance, is the subject of
this paper.

The idea underlying optimal balance is that adiabatic invariants of the unper-
turbed dynamics remain adiabatic under slowly varying perturbations. If a homo-
topy varying in slow time perturbs the system from linear to fully nonlinear, trajec-
tories that emerge from the known slow subspace at the linear end will connect to
an approximately slow fully nonlinear state at the other end. Computationally, this
amounts to solving a boundary value problem where the boundary condition at the
linear end constrains to the slow linear subspace and the boundary condition at the
fully nonlinear end constrains to the slow base-point coordinate of the approximate
manifold.

Our motivation comes from studying balance in geophysical fluid flow. On large
scales in the mid-latitudes, the Coriolis force nearly balances the pressure gradi-
ent force while inertial forces are subdominant. As a result, the flow approxi-
mately splits into a slow balanced component which evolves nonlinearly and inter-
acts only weakly with the fast components which are approximately described by
linear waves. A precise characterization of this splitting is a perennial theme in
geophysical fluid dynamics; we refer the reader to the reviews of Vanneste [25] and
McIntyre [18] for a more comprehensive background.

A computational procedure for describing balance is of considerable practical
importance. First, unphysically imbalanced initial conditions may require unneces-
sary large amounts of artificial viscocity to ensure stability in a numerial simulation;
thus, accurate balancing can improve numerical accuracy, in particular when fron-
togenesis is important [4]. Second, in studies of the role of inertial-gravity waves in
the energy budget of the ocean, accurate diagnostics are currently lacking; optimal
balance may provide a way to diagnose small imbalanced components in large un-
steady flows with minimal ambiguity [27]. Third, enforcing balance is a practical
necessity when assimilating noisy observations to initialize a weather forecast; not
doing so results in spectacular failure (see, e.g., the wonderful historical account
in [13]). To ensure that the assimilated state is consistently balanced, the analysis
output is typically post-processed, e.g. using a digital filter [14]. Dynamical infor-
mation about imbalance and approximate slow manifolds has only recently become
part of the actual data assimilation procedure [19, 7]. Cotter [2], in particular,
demonstrates that optimal balance can be used as a constraint when assimilating
balanced states in a simple two-scale Hamiltonian model problem.

The method of optimal balance for rotating fluid flow was first proposed by
Viúdez and Dritschel [26]. In their work, they coin the term “optimal potential
vorticity balance” which reflects that rather than deforming the equations of mo-
tion, they ramp up the vorticity anomaly in the initial data. Mathematically,
this is equivalent to homotopically turning on nonlinear interactions. In practical
terms, this is feasible only when using a potential-vorticity-based fully Lagrangian
code. In their work, they suggest a simple iterative scheme to solve the resulting
boundary value problem and report good behavior both in terms of convergence
of the algorithm and in terms of quality of balance as measured by independent
diagnostics.

Cotter [2] studies optimal balance for data assimilation using a simple finite-
dimensional Hamiltonian system which has been used as a prototype model for
balance in a number of previous studies [23, 3, 8]. In particular, Cotter points out
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that their earlier results [3] imply rigorous exponential estimates for analytic ramp
functions with exponentially decaying tails.

In the present paper, we consider optimal balance in the same finite-dimensional
setting on a fixed finite interval in slow time. In this setting, the asymptotic be-
havior of the method is determined not only by the smoothness of the potential
and of the ramp function, but also by the order of vanishing of the derivatives of
the ramp function at the temporal end points. When the derivatives of the ramp
function vanish only up to some finite order k at the initial and at the final time of
the ramp, the rate of convergence of optimal balance is limited to O(εk+1), where
ε denotes the time-scale separation parameter. Correspondingly, beyond-all-order
accuracy requires that all derivatives of the ramp function vanish at the end points.
However, the ramp function cannot simultaneously be uniformly analytic and sat-
isfy the correct end-point conditions. Here, we show that exponential estimates can
still be achieved when the ramp function is not analytic but of Gevrey class 2.

When the potential in this model is analytic, classical Hamiltonian normal form
theory states that there exists a constant c and a symplectic transformation which
approximately splits the system into fast and slow variables such that when the
fast variable is initially zero, it remains O(exp(−c/ε)) over times of O(exp(c/ε)) as
ε→ 0 [3]. Here we prove that optimal balance using the ramp functions described
above yields a state that, if used as initial data for the original system, corresponds
to a normal-form fast variable that remains O(exp(−c/ε1/3))-small over times of
O(exp(c/ε)). We present numerical results that indicate that the exponent 1

3 is
not sharp, but that an exponent 1 as in the classical normal form result cannot be
achieved.

This result provides a strong justification of the method of optimal balance: the
algorithm yields a point on the approximate slow manifold that is exponentially
close to what could be obtained from an optimally truncated asymptotic expansion.

The method of proof has a long history. A concise mathematical treatment of
adiabatic invariance for linear systems is given by Leung and Meyer [11], we refer
the reader to this paper for some of the early history. Exponential estimates for
nonlinear systems are due to Nekhoroshev [22] and Nĕıshtadt [20, 21]. Cotter and
Reich [3] apply this theory to the model problem under consideration here. In our
proof, we do not use their Hamiltonian setting because the recursive step is easy
only when applying a Cauchy estimate at each iteration. When the ramp function
is not analytic but only of Gevrey class 2, Cauchy estimates are not available and
the iteration does not directly close up. As we do not need estimates over times
longer than O(1) in slow time, we resort to more direct estimates on an explicit
construction of the fast-slow splitting as used in [8].

The paper is organized as follows. In Section 2, we detail the finite-dimensional
model for balance and review the direct construction of the slow vector field. In
Section 3, we describe the method of optimal balance applied to this model. We
state and prove our main theorems on optimal balance in Sections 4 and 5 for
Ck potentials and for analytic potentials, respectively. Section 6 presents numer-
ical simulations corroborating our analytical results. Section 7 concludes with a
discussion and open questions.
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2. The model

We consider the Hamiltonian system of differential equations

q̇ = p , (1a)

ṗ = Jp− ε∇V (q) , (1b)

where q : [0, T ] → R2d is the vector of positions, p is the vector of corresponding
momenta, J is the canonical symplectic matrix in 2d dimensions, V is a smooth
potential and ε is a small parameter.

When d = 1, this system can be interpreted as describing the motion of a single
Lagrangian particle in the rotating shallow water equations with frozen height field
[23, 3, 6]. In this interpretation, Jq̇ represents the Coriolis force and ε→ 0 describes
the limit of rapid rotation. Alternatively, (1) can be seen as describing the motion
of a single charged particle in a planar potential V under the influence of a magnetic
field normal to the plane of motion. In this interpretation, Jq̇ represents the Lorentz
force and ε→ 0 corresponds to the mass of the particle going to zero while its charge
remains constant.

The system (1) is Hamiltonian, albeit with a non-canonical symplectic struc-
ture. To leading order, the splitting into slow and fast degrees of freedom can be
determined by inspection. Indeed, rescaling to slow time τ = εt, introducing a slow
momentum π = p/ε, and setting ε = 0, we see that the leading order slow dynamics
is given by

dq

dτ
= −J∇V (q) , (2)

so that the corresponding leading order fast variable is ω = π + J∇V (q). This
splitting can be iteratively refined by adding higher order terms, which gives an
explicit formula for the nth-order slow vector field Gn(q) which is needed as a
reference for the optimal balance vector field to compare against and which is
stated here in terms of the original fast time variables.

Theorem 1 ([8]). For n ∈ N, suppose V ∈ Cn+2, and set

Gn(q) = ε

n∑
i=0

gi(q) ε
i (3)

with coefficient functions gi recursively defined via

g0(q) = −J∇V (q) , (4a)

gk(q) = −J
∑

i+j=k−1

Dgi(q) gj(q) . (4b)

For fixed q0 ∈ R2d and a > 0, let q(t) denote a solution to

q̇ = Gn(q) (5)

with q(0) = q0. Let qε(t) solve the full parent dynamics (1) consistently initialized
via qε(0) = q0 and pε(0) = Gn(q0). Then there exist ε0 > 0 and c = c(q0, a, V )
such that

sup
t∈[0,a/ε]

‖qε(t)− q(t)‖ ≤ c εn+2 (6)

for all 0 < ε ≤ ε0.



OPTIMAL BALANCE VIA ADIABATIC INVARIANCE 5

p(0) = 0

p(T )

p

q

t = 0

t = T

q(T ) = q∗

M(0)

M(T )

Figure 1. Sketch of the geometry of optimal balance in extended
phase space.

We note that this result does not fully use the Hamiltonian structure; it relies
only on the anti-symmetry of J . Thus, the resulting estimate is valid only over
slow times of order one. Hamiltonian normal form theory will yield estimates that
remain valid for much longer times [3]. For our purposes this is not required, but
we make use of the explicit form of the slow vector field.

3. Optimal balance

On a conceptual level, optimal balance works by homotopically deforming the
system into a simpler, e.g. linear system where the slow manifold is trivial to com-
pute. Figure 1 provides a sketch in which the slow manifold at t = 0 is described
by p = 0. The homotopy generates a surface of approximate slow manifolds in the
extended phase space, illustrated by the green shaded surface. In general, for a
frozen value of the homotopy parameter, the “manifold” M is only approximately
invariant: trajectories drift away exponentially slowly with respect to the scale
separation parameter ε. This is indicated by the dotted green line.

In the optimal balance, we identify the homotopy parameter with slowly varying
time. In this case, the approximate slow manifold is an adiabatic invariant: a
trajectory initially on the slow manifold will stay near it for a very long time while
the manifold deforms slowly. Such a trajectory is shown in red in Figure 1. In this
case, there are two sources of drift: on the one hand the drift already present for a
frozen homotopy parameter. On the other hand, the drift due to the deformation
of the manifold in time. In the following, we shall estimate both sources of drift.

Our task is to specify a single point on the approximate slow manifold M(T )
by computing the fiber coordinate p∗ for a given base-point coordinate q∗. In
the extended phase space picture of Figure 1, this corresponds to specifying two
boundary conditions: q(T ) = q∗ and p(0) = 0. The first condition fixes the base-
point. The second condition ensures that the entire trajectory remains near M(t)



6 G.A. GOTTWALD, H. MOHAMAD, AND M. OLIVER

for all t ∈ [0, T ]. We then define p∗ = p(T ) as the computational approximation of
the fiber coordinate.

For the prototype model (1), the procedure can be stated as follows. Take a
smooth monotonic ramp function ρ : [0, 1]→ [0, 1] with ρ(0) = 0 and ρ(1) = 1. For
given q∗ ∈ R2d, fix a ramp time T > 0 and solve the boundary value problem

q̇ = p , (7a)

ṗ = Jp− ε ρ(t/T )∇V (q) , (7b)

with boundary conditions

p(0) = 0 and q(T ) = q∗ . (7c)

Then set p∗ = p(T ).
We note that when the ramp parameter is frozen at t = 0, (7) reduces to the

trivial linear fast-slow system q̇ = p and ṗ = Jp, where p is fast and q is slow. This
justifies the initial-time boundary condition p(0) = 0. We note that the boundary
value q(0) is not used explicitly in this setup.

In the following two sections, we analyze the accuracy of optimal balance by
comparing against the slow vector field Gn associated with the original dynamical
system (1), given by Theorem 1. We shall see that the asymptotic construction
of the slow vector field for the ramped system (7) contains additional terms at
O(εk+1) unless all derivatives of ρ up to order k vanish at the final time. Similarly,
the description of the trivial slow manifold p = 0 differs from the description of the
slow manifold for the ramped system (7) at O(εk+1) unless all derivatives of ρ up
to order k vanish at the initial time. Thus, the order of accuracy of optimal balance
is limited by the order of vanishing of derivatives of the ramp function at the end
points.

4. Algebraic optimal balance

In this section, we consider the case when V or the ramp function ρ are only
finitely differentiable. Then the best we can expect is an algebraic rate of con-
vergence of optimal balance. The proof is a straightforward generalization of the
classical fast-slow splitting used to prove Theorem 1 in [8].

Theorem 2. For n ∈ N, suppose ρ ∈ Cn+1([0, 1]) with ρ(0) = 0 and ρ(1) = 1
satisfying the algebraic order condition

ρ(i)(0) = ρ(i)(1) = 0 (8)

for i = 1, . . . , n. Suppose further that V ∈ Cn+2. Fix a > 0 and consider a sequence
of ramp times T = a/ε and a sequence of solutions (q, p), implicitly parameterized by
ε, to the boundary value problem (7). Then there exists a constant c = c(ρ, a, n, V )
such that

‖p(T )−Gn(q∗)‖ ≤ c εn+2 . (9)

Proof. By choosing appropriate units of time, we can take a = 1 without loss of
generality. We then introduce the fast variable w = p− ε Fn+1, where

Fn(q, t) =

n∑
i=0

fi(q, t) ε
i (10)



OPTIMAL BALANCE VIA ADIABATIC INVARIANCE 7

with coefficients fi to be determined. Then

q̇ = ε Fn+1 + w , (11a)

ẇ = (J − εDFn+1)w + ε (JFn+1 − ρ∇V )− ε2 ∂τFn+1 − ε2 DFn+1 Fn+1 (11b)

where, as before, τ = εt so that ∂t = ε∂τ . We now eliminate the inhomogeneous
term on the right of (11b) order by order up to an O(εn+2) remainder. This leads
to the recursive expression

f0 = −ρ J∇V (q) , (12a)

fk = −J ∂τfk−1 − J
∑

i+j=k−1

Dfi(q) fj(q) (12b)

for k = 1, . . . , n + 1. We remark that for ρ ≡ 1, Fn reduces to Gn introduced in
Theorem 1. Thus,

ẇ = (J − εDFn+1)w +O(εn+2) (13)

so that left-multiplying by w implies

d

dt
‖w‖ ≤ ε ‖DFn+1‖ ‖w‖+O(εn+2) . (14)

By assumption, ∂iτρ(0) = ρ(i)(0) = 0 so that fi(q, 0) = 0 for i = 1, . . . , n. Recalling
that p(0) = 0, we obtain

w(0) = p(0)− ε Fn(q(0), 0)− εn+2 fn+1(q(0), 0) = O(εn+2) . (15)

Hence, applying the Gronwall lemma to (14), we find that there exists c = c(ρ, n, V )
such that

sup
t≤T
‖p(t)− ε Fn(q(t), t)‖ ≤ c εn+2 . (16)

Comparing with (4) and noting that ρ(i)(1) = 0 for i = 1, . . . , n, we see that

Gn(q∗) = ε Fn(q(T ), T ) . (17)

The required estimate (9) follows. �

Corollary 3. Suppose that, in the setting of Theorem 2, V is analytic and asymp-
totically strictly convex. Then for every desired order n ∈ N there exists a ramp
function so that the method of optimal balance generates a state which remains
balanced to O(εn+2) over times of O(exp(c/ε)) under the dynamics of system (1).

This result is a consequence of the uniqueness of the asymptotic expansion. More
specifically, the fast variable p−Gn in our construction and the fast variable pε in
the Hamiltonian normal form setting of [3] coincide up to terms of O(εn+2). Thus,
optimal balance at O(εn+2) in the sense of Theorem 2 is equivalent to pε = O(εn+2)
in the notation of [3]. Since V is assumed analytic and asymptotic strict convexity
of V implies that trajectories remain in a compact subset of phase space for all
times, [3, Theorem 2.1] applies and yields persistent O(εn+2) smallness of the fast
variable over exponentially long times.
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5. Exponential optimal balance

In this section, we refine the result of Section 3 for the case when V is analytic
and ρ is of Gevrey class 2.

Let us first recall that a function f ∈ C∞(U) for U ⊂ R open is of Gevrey class
s if there exist constants C and β such that

sup
x∈U
|f (n)(x)| ≤ C n!s

βn
(18)

for all n ∈ N; see, e.g., [9]. We write f ∈ Gs(U). Then the following is true.

Theorem 4. Suppose ρ ∈ G2(0, 1) with ρ(0) = 0 and ρ(1) = 1 satisfying the
exponential order condition

ρ(i)(0) = ρ(i)(1) = 0 (19)

for all i ∈ N∗. Fix a > 0, and consider a sequence of ramp times T = a/ε and a
sequence of solutions (q, p), implicitly parameterized by ε ≤ 1, to the boundary value
problem (7). Now suppose there exists a compact subset of phase space K ⊂ R2d

containing this sequence of solution trajectories and that there exist R > 0 and
z0 ∈ R2d with K ⊂ BR/2(z0) such that V is analytic on BR(z0). Then there exist
n = n(ρ, a, V, ε) ∈ N and positive constants c = c(ρ, a, V ) and d = d(ρ, a, V ) such
that

‖p(T )−Gn(q∗)‖ ≤ d e−cε
− 1

3 . (20)

To prove this theorem, we proceed as in the proof of Theorem 2, albeit with a
more careful estimate on the remainder term. Defining w as before, we write (13)
in the form

ẇ = (J − εDFn+1)w −Rn+1 , (21)

with explicit remainder

Rn+1 = εn+3 ∂τfn+1 +

2(n+1)∑
k=n+1

εk+2
∑
i+j=k
i,j≤n+1

Dfi fj . (22)

The key observation is that each of the terms appearing in the expression for
fk, and each of the terms appearing in the expression for the remainders Rk, is a
product of functions which depend only on ρ and functions which depend only on
V . Hence, they can be written as inner products of coefficient vectors encoding
all ρ-dependence with coefficient vectors encoding all V -dependence. A Hölder-like
inequality will separate the two, so that we can estimate each class of coefficients
separately in its respective norm.

To formalize this idea, we need to introduce some notation. We define the
Cartesian product F ⊕ G of two vectors F = (F1, . . . ,FN ) and G = (G1, . . . ,GM )
as

F ⊕ G = (F1, . . . ,FN ,G1, . . . ,GM ) (23)

and the tensor product A ⊗ G of a vector of linear operators A = (A1, . . . ,AN )
acting on a vector G = (G1, . . . ,GM ) as

A⊗ G = (A1G1, . . . ,A1GM , . . . ,ANG1, . . . ,ANGM ) . (24)
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Further, we define the vector family {Rk} as

R0 = ρ , (25a)

Rk+1 = ∂τRk ⊕
⊕
i+j=k

Ri ⊗Rj for k = 0, . . . , n , (25b)

Rk+1 =
⊕
i+j=k
i,j≤n+1

Ri ⊗Rj for k = n+ 1, . . . , 2n+ 2 (25c)

where the components of Rj are acting on the components of Rl by multiplication
and the indexed Cartesian product can be performed in any order as long as the
order convention remains fixed throughout. Analogously, we define the family {Fk}
as

F0 = −J∇V , (26a)

Fk+1 = −
(
Fk ⊕

⊕
j+l=k

DFj ⊗Fl
)
Jk+1 for k = 0, . . . , n+ 1 , (26b)

Fk+1 = −
( ⊕

i+j=k
i,j≤n+1

DFj ⊗Fl
)
Jk+1 for k = n+ 2, . . . , 2n+ 2 , (26c)

where Jk+1 denotes the block-diagonal matrix of matching dimension with J on the
main diagonal.

As the recursive structure of the coefficient vectors mirrors the recursive structure
in the definition of the fk by (12), we can write

fk =

N∑
i=1

Rik F ik ≡ 〈Rk,Fk〉 . (27)

Likewise, the remainder (22) takes the form

Rn+1 = J

2(n+1)∑
k=n+1

εk+2 〈Rk+1,Fk+1〉 . (28)

We first consider the family of coefficient vectors Rk. For a general R ≡
(R1, . . . ,RN ), we define the norm

|R| = max
i=1,...,N

|Ri| . (29)

We then have the following estimate with respect to this norm.

Lemma 5. Let ρ ∈ G2(0, 1) with C = 1 and β ≤ 1 in (18). Then

|Rk| ≤
(k + 1)!2

βk+1
. (30)

Proof. We recursively define a family of function classes via Γ1 = {ρ} and r ∈ Γk
for k ≥ 2 if there exists a nonnegative integer m ∈ N, a multi-index of length s ∈ N∗
of strictly positive integers α ∈ (N∗)s, and functions rj ∈ Γαj for j = 1, . . . , s such
that k = m+ |α| and

r = ∂mτ

s∏
j=1

rj . (31)
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We note that the components of Rk−1 are of class Γk. We shall show that r ∈ Γk
satisfies

sup
θ∈(0,1)

|r(θ)| ≤ k!2

βk
. (32)

Due to the definition of the norm (29), this implies (30).
To prove (32), we proceed by induction on k. For k = 1, the statement is obvious.

Now suppose k ≥ 2, so that r has a decomposition of the form (31). We can also
assume, without loss of generality, that when s = 1, |α| = α1 = 1 and m = k−1. In
this case, the statement is a direct consequence of the Gevrey class property (18).
Now suppose that s ≥ 2. Then, by the Leibniz rule,

|r(θ)| =
∣∣∣∣∣ ∑
|β|=m

(
m

β

) s∏
j=1

∂βjτ rj(θ)

∣∣∣∣∣ ≤ ∑
|β|=m

(
m

β

)
(α+ β)!2

β|α+β|
≤ m!

βk
k!2

m!
, (33)

where the first inequality uses the induction hypothesis and the second inequality is
based on the observation that |α+β| = m+ |α| = k and a combinatorial inequality
which is stated and proved as Lemma 10 in the Appendix. �

We now turn to the family Fk. We define the corresponding norms as follows.
For z0 ∈ R2d fixed and arbitrary r > 0, let Br(z0) denote the closed ball of radius
r centered at z0. For a vector field f on R2d, we write

‖f‖r = sup
z∈Br(z0)

‖f(z)‖ (34)

and define a norm for F ≡ (F1, . . . ,FN ) via

‖F‖r =

N∑
i=1

‖F i‖r . (35)

We now prove a variant of Cauchy’s estimate in this setting.

Lemma 6. Let r > s > 0, and suppose the components of F and G are analytic
on Br(z0). Then

‖DF ⊗ G‖s ≤
1

r − s ‖F‖r ‖G‖s . (36)

Proof. Let h be any component of DF ⊗ G, i.e., there are components f, g of F
and G, respectively, such that h = Df g. For fixed z ∈ Bs(z0), the function φ(t) =
f(z + t g(z)) is analytic for |t| ≤ δ ≡ (r − s)/‖g‖s. Since φ′(0) = h, the classical
Cauchy estimate implies

‖h(z)‖ = ‖φ′(0)‖ ≤ 1

δ
sup
|t|≤δ
‖φ(t)‖ ≤ 1

r − s ‖f‖r ‖g‖s . (37)

Estimate (36) then follows from the definition of the norm (35). �

Lemma 7. Let z0 ∈ R2d, R > 0, and V be analytic on BR(z0). Then there exist
constants C > 0 and γ > 0 such that for any n ∈ N∗ and k ∈ {0, . . . , 2n+ 3},

‖Fk‖R/2 ≤ C
(
n

γ

)k
. (38)



OPTIMAL BALANCE VIA ADIABATIC INVARIANCE 11

Proof. We set

δ =
R

4n+ 6
and M = max

{
sup

z∈BR(z0)

|∇V (z)|, δ
}
, (39)

and recursively define the sequence (Sk) via

S0 = 1 , Sk+1 = Sk +
∑
i+j=k

Si Sj (40)

which has the asymptotic behavior [5, pp. 474–475]

Sk ∼
(3− 2

√
2)−k−

1
2

2
√
πk3

. (41)

We will proceed to show that

‖Fk‖R−δk ≤
Mk+1

δk
Sk . (42)

The claimed estimate (38) is then a direct consequence of (42), (41), (39) and

δk ≤ R/2. Indeed, when M = δ in (39), then (38) holds with γ = 3 − 2
√

2.

Otherwise, M = supz∈BR(z0)|∇V (z)|, so that choosing γ = R (3 − 2
√

2)/(10M)
will suffice. The minimum of both provides an n-independent choice of γ, with
similar considerations for C.

To prove (42), we proceed by recursion on k. For k = 0, the statement is trivial.
Now suppose the result is proved up to index k. Then, by Lemma 6,

‖Fk‖R−δ(k+1) ≤ ‖Fk‖R−δ(k+1) +
1

δ

∑
i+j=k

‖Fi‖R−δk ‖Fj‖R−δ(k+1)

≤ ‖Fk‖R−δk +
1

δ

∑
i+j=k

‖Fi‖R−δi ‖Fj‖R−δj

≤ Mk+2

δk+1

(
δ

M
Sk +

∑
i+j=k

Si Sj

)

≤ Mk+2

δk+1
Sk+1 , (43)

where the second inequality is due to the nesting of the balls over which the supre-
mum is taken, the third inequality is due to the recursion hypothesis, and the last
inequality uses M ≥ δ. �

Proof of Theorem 4. Without loss of generality, we assume that a = 1. Recalling
the expression for the remainder in the form (28), noting that

‖〈R,F〉‖r ≤ |R| ‖F‖r , (44)
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and referring to Lemma 5 and Lemma 7, we estimate

‖Rn+1‖R/2 ≤
2n+3∑
k=n+2

εk+2 |Rk| ‖Fk‖R/2

≤ C
2n+3∑
k=n+2

εk+2 (k + 1)!2

βk+1

(
n

γ

)k

≤ C1 ε
2

2n+3∑
k=n+2

εk
n3k

αk

≤ C1
δn+3

1− δ . (45)

The third step is based on Stirling’s inequality in the form m! < em−1mm+1/2 for
every m ≥ 2, the inequality k + 1 ≤ 2n+ 3 ≤ 5n, and the observation that factors
growing algebraically in k can always be absorbed by lowering α and adjusting
the overall multiplicative constant. In the final step in (45) we have estimated
the sum by the corresponding infinite geometric series under the assumption that
δ ≡ ε n3/α < 1 and ε ≤ 1. Let us now choose

n =

⌊(
αδ

ε

) 1
3
⌋
. (46)

Then

‖Rn+1‖R/2 ≤
C1

1− δ δ
(αδ/ε)

1
3 ≤ C2 e−cε

− 1
3 , (47)

where, in the last inequality, we have fixed δ ∈ (0, 1) so that c > 0. Now following
the same steps as in the proof of Theorem 2 and using assumption (19) at t = 0,
we observe that w(0) = 0 so that there exists a constant C3(T ) such that

sup
t≤T
‖p(t)− ε Fn(q(t), t)‖ ≤ C3(T ) e−cε

− 1
3 . (48)

Using assumption (19) now at t = T , we verify that

Gn(q∗) = ε Fn(q(T ), T ) (49)

and the required estimate follows. �

Remark 1. While it is possible to find ramp functions in Gs for any s > 1 satisfying
the exponential order condition (19), the proof as stated will generalize only to
Gevrey classes s > 2, as the required generalization of Lemma 9,

n∑
m=0

(m+ `)!s−1 (n+ k −m− `)!s−1 ≤ (n+ k)!s−1 (50)

fails for s < 2. For s > 2, the final estimate reads

‖p(T )−Gn(q∗)‖ ≤ d e−cε
− 1
s+1

. (51)

As this is weaker than (20), this generalization is of little interest, in particular
since a suitable ramp function in G2 is easily available; see (55) below.

As in Section 4, we can combine our result with the long-time invariance of
approximate balance provided by [3, Theorem 2.1] as follows.
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Corollary 8. In the setting of Theorem 4, suppose V is analytic and strictly convex.
Then the method of optimal balance generates a state which remains balanced to
O(exp(−c/ε1/3)) over times of O(exp(c/ε)) under the dynamics of system (1).

6. Numerical Tests

A direct numerical demonstration of Theorems 2 and 4 is impossible as we do
not have direct access to the reference slow vector field Gn. We thus resort to
computing the following proxy for the balance error.

(1) Given q∗, compute the corresponding p∗ via optimal balance.
(2) Evolve the full system (1), initialized with q(0) = q∗ and p(0) = p∗, forward

up to some time t1 which is fixed independent of ε on the slow time scale.
(For the simulations shown below, εt1 = 0.5.)

(3) “Rebalance” the evolved state, i.e., find a p∗1 via optimal balance for the
given q∗1 = q(t1).

(4) Define the diagnosed imbalance as I = ε−1 ‖p(t1)− p∗1‖.
We note that the diagnosed imbalance I is not a direct measure of the imbalance

error ‖p(T ) − Gn(q∗)‖. On the one hand, I may be overestimating imbalance
because during the forward simulation of model (1), there is a slow drift off the
slow manifold. However, since t1 is taken to be small, this contribution is small
as well as asymptotically subdominant. A more serious question is whether I may
underestimate the imbalance, because re-balancing may simply reproduce the same
bias committed during the initial balancing. Since imbalanced motion is oscillatory
on the fast time scale, we would expect that the diagnosed imbalance oscillates on
the fast time scale as a function of t1, so that the amplitude of this oscillation can be
taken as a measure of imbalance. However, we did a careful pre-study which showed
that I depends almost monotonically on t1. Thus, simply looking at the imbalance
for fixed t1 already gives robust results. Moreover, as we shall see, the diagnosed
imbalance reproduces the predictions of Theorem 2 accurately. This gives strong
empirical support to the idea that I is a useful proxy for imbalance which could
also be used in more complex situations, e.g., for the study of rotating fluids.

In our proof-of-concept implementation, we use the potential

V (q) = 3
4 q

4
1 + 1

4 q
4
2 . (52)

and solve the boundary value problem (7) by simple shooting with an off-the-shelf
ODE solver and root finder. More efficient implementations would use multiple
shooting and possibly a symplectic time-discretization. The ramp functions are of
the form

ρ(θ) =
f(θ)

f(θ) + f(1− θ) , (53)

where

f(θ) = θk (54)

for different exponents k, or f(θ) = exp(−1/θ), so that

ρ(θ) =
e−1/θ

e−1/θ + e−1/(1−θ)
. (55)
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Figure 2. Diagnosed imbalance I as a function of ε for different
ramp functions. “Quadratic,” “quartic,” and “exponential” refer
to the ramp functions (53) with f(θ) = x2, f(θ) = x4, and f(θ) =
exp(−1/θ), respectively. The ramp time is T = 2/ε.

The ramp function (55) satisfies the exponential order condition and is of Gevrey
class 2, thus it satisfies the assumptions of Theorem 4.1

In Figure 2, we compare the performance of ramp functions satisfying different
order conditions. For two algebraic ramp functions with k = 2 and k = 4 in (54)
corresponding to n = 1 and n = 3 in the algebraic order condition of Theorem 2,
the predicted respective quadratic and quartic decay of imbalance is clearly visible.
The super-algebraic decay of imbalance for the ramp function with exponential
order condition is seen as a convex-shaped curve in the log-log plot of I vs. ε.

In Figure 3, we explore the dependence of the diagnosed imbalance I on the
ramp time T for the exponential ramp function case. For a given value of ε, longer
ramp times yield smaller diagnosed imbalances. A rigorous study goes beyond the
Theorems proved here.

Figure 4 shows the same data as Figure 3, but with a doubly logarithmic vertical
axis. Assuming that the diagnosed imbalance behaves in the general form suggested
by Theorem 4, i.e., if

I = d e−cε
−α
, (56)

then

ln(ln d− ln I) = ln c− α ln ε . (57)

Then, plotting ln(− ln I) vs. ln ε should asymptote to a line of slope −α. The data
points show such behavior for a good range of small values of ε before the accuracy

1Indeed, each of the terms appearing in (55) are of class G2, see Lemma 11. As Gevrey classes
are vector spaces, the denominator of (55) is also of class G2. Finally, nonsingular quotients of

G2-functions are again of class G2, see Lemma 12.
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Figure 3. Diagnosed imbalance I as a function of ε when taking
the exponential ramp function (53) with f(θ) = exp(−1/θ) for
three different ramp times.

of the time integrator and root solver, controlled to be at least 10−10, breaks down.
The observed behavior is better than α = 1/3 obtained in the bounds of Theorem 4,
but depends on the ramp time. For large ramp times, the error is dominated by the
derivatives of the potential V , and the estimated exponent comes close to α = 1,
which is the exponent expected from the usual exponential asymptotics [3]. For
shorter ramp times, the influence of the ramp function becomes more important so
that the estimated exponent decreases, but not to as low as the theoretical bounds.

7. Discussion

Our results show, in the context of a simple finite dimensional Hamiltonian model
problem, that the method of optimal balance yields a state which is exponentially
close to a balanced state obtained by optimal truncation of an asymptotic series
describing the approximate slow manifold. We believe that similar results will apply
to more general Hamiltonian fast-slow systems in the absence of resonances.

The results give strong support to the notion that optimal balance may in fact be
the best practically available characterization of a slow manifold in this context. As
optimal truncation of an asymptotic series is not computationally feasible, optimal
balance could therefore be used as a computable definition of a balanced state (this
idea has in fact been proposed earlier by McIntyre [17]).

However, a number of questions remain open. An obvious question is the sharp-
ness of the analysis, both in terms of the current restriction to ramp functions in
Gevrey classes Gs for s ≥ 2, and in terms of the exponent α in the imbalance
scaling (56). A more practical concern is the best choice of ramp time T for fixed
ε. Our analysis concerns only the scaling with respect to ε, but the structure of
the estimates, along with the numerical results, suggests that at least initially the
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Figure 4. The same data as in Figure 3, shown on a doubly log-
arithmic vertical axis. This allows a least squares fit to determine
the power of ε in the exponent of the expression for the exponen-
tial convergence rate, see equation (57). The linear least squares
fit was performed over a finite interval in ε, indicated by the larger
marker symbols.

results improve when the ramp time is increased. This, however, cannot go on
forever because beyond some ramp time Topt, the imbalance due to the drift off the
approximate manifold will dominate and imbalance will increase as T is increased
further. How to design an adaptive algorithm which chooses an optimal ramp time
automatically is entirely open.

Whereas optimal balance has been successfully used in geophysical fluid dynam-
ics, the theory presented here was developed only for finite-dimensional Hamil-
tonian systems. It is therefore a natural question how our results translate to
infinite-dimensional Hamiltonian systems. A direct generalization of the model (1)
is the semilinear Klein–Gordon equation in the non-relativistic limit (e.g. [24]). In
general, obtaining results on approximate slow manifolds for infinite dimensional
Hamiltonian systems is difficult since unbounded operators may destroy the scale
separation and slow-fast or fast-fast resonances may emerge. Existing results either
apply to special solutions (e.g. [12]), bounded slow subsystems (e.g. [10]), or re-
quire spatial analyticity of solutions (e.g. [16]). Finding the right analytical setting
for the semi-linear Klein–Gordon equation is a subject of ongoing research.

The question of justification of optimal balance in geophysical flow problems is
even more difficult, although our main motivation and reported successful imple-
mentations come from this area. Further, the question of efficient implementation,
in terms of run-time and in terms of coding effort, is of considerable practical
relevance. For the toy model considered here, we were able to solve the optimal
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balance system problem (7) by simple shooting. However, this might fail or become
excessively expensive in higher dimensions.

Sophisticated boundary value solvers may be needed but are hard to implement
and computationally costly. We remark that we have provided only an approxi-
mate iterative solution of the boundary-value-problem (7) while the issue of well-
posedness of this boundary-value problem was not addressed. Viúdez and Dritschel
[26] suggest an iterative procedure in which one integrates back and forth, resetting
to the correct boundary condition at each end. Empirically, their approach con-
verges well in the geophysical fluid dynamics context of their study. The iterative
back-and-forth integrations can be understood as nudging toward the boundary-
values. For linear systems, back-and-forth nudging can be rigorously proven to
converge to the true solution [1]; the problem considered here is, in our under-
standing, not directly covered by these results but we expect that a proof could be
obtained with reasonable effort. In our concrete simulations, shooting was slightly
more efficient than back-and-forth nudging and converged for a moderately larger
set of parameters. Finding the best strategy is an open problem.

Appendix A. Combinatorial estimates

In the following, we prove an estimate on the combinatorial constants which
appear in the proof of Theorem 4. This result is stated as Lemma 10 below. We
begin with a special case which is needed in the proof of the general result.

Lemma 9. Let n ∈ N and k, ` ∈ N∗ with 1 ≤ ` < k. Then

n∑
m=0

(m+ `)! (n+ k −m− `)! ≤ (n+ k)! . (58)

Proof. We proceed by induction on n. For n = 0, the statement is obvious. Now
suppose the statement is true up to step n− 1. Then

n∑
m=0

(`+m)! (n+ k − `−m)! = (`+ n)! (k − `)! +

n−1∑
m=0

(`+m)! (n+ k − `−m)!

≤ (n+ k − 1)! + (n+ k − 1)

n−1∑
m=0

(`+m)! (n− 1 + k − `−m)!

≤ (n+ k − 1)! + (n+ k − 1) (n− 1 + k)! = (n+ k)! (59)

where the first inequality is due to 1 ≤ ` < k and the second inequality uses the
induction hypothesis. �

Lemma 10. Let n ∈ N, and s ∈ N∗. Then for a multi-index of strictly positive
integers α ∈ (N∗)s with |α| = k,∑

|β|=n

(α+ β)!2

β!
≤ (n+ k)!2

n!
, (60)

where the sum is over multi-indices β of length s.

Proof. We proceed by induction on s. For s = 1, the two sides of (60) are trivially
equal. Now suppose the statement holds true up to step s−1. We write α = (α′, `)
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and β = (β′,m), where α′ and β′ are multi-indices of length s− 1, and ` and k are
integers satisfying 1 ≤ ` < k. Then∑
|β|=n

(α+ β)!2

β!
=

n∑
m=0

(`+m)!2

m!

∑
|β′|=n−m

(α′ + β′)!2

β′!

≤
n∑

m=0

(`+m)!2

m!

(n−m+ k − `)!2
(n−m)!

=
(n+ k)!

n!

n∑
m=0

(
n

m

)(
n+ k

m+ `

)−1
(m+ `)! (n+ k −m− `)! . (61)

As the ratio of the binomial coefficients that appear in the right hand sum is always
bounded above by 1, the proof is achieved by Lemma 9. �

Appendix B. G2-estimates on the exponential ramp function

The following two results are necessary to show that the exponential ramp func-
tion (55) used in the numerical experiments above is of Gevrey class 2. We believe
that the results are classical; Lemma 11, for example, is stated without proof in
[9, p. 218]. In this appendix, we give complete proofs for the convenience of the
reader.

Lemma 11. The function

f(x) =

{
0 for x ≤ 0

exp(−1/x) for x > 0
(62)

is of Gevrey class 2 uniformly in R.

Proof. The function f is holomorphic in the right complex half-plane. Fixing λ ∈
(0, 12 ), the Cauchy integral formula

f (n)(x) =
n!

2πi

∫
γ

f(z)

(z − x)n+1
dz (63)

applies in particular when γ is a circle of radius λx centered at x. We parameterize
γ writing z(θ) = x + λxw(θ) where w(θ) is an arc-length parameterization of the
unit circle. Then

|f (n)(x)| ≤ n!

2π (λx)n+1

∫ 2π

0

|f(z(θ))|dθ

≤ n!

(λx)n+1
sup

θ∈[0,2π]

∣∣∣∣exp

(
− 1 + λw(θ)

x |1 + λw(θ)|2
)∣∣∣∣

≤ n!

(λx)n+1
exp

(
− 1− λ
x |1 + λ|2

)
. (64)

Maximizing the right hand side with respect to x and using Sterling’s inequality in
the form mm e−m ≤ m!, we obtain

sup
x∈R
|f (n)(x)| ≤ (n+ 1)!2

ηn+1
(65)

with η = λ(1− λ)/(1 + λ)2. This proves that f is of Gevrey class 2. �
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Lemma 12. Let U ⊂ R be open and suppose f, g ∈ G2(U) with g ≥ c > 0 for some
constant c. Then h = f/g ∈ G2(U).

Proof. Without loss of generality, assume that f ≤ 1 and g ≥ 1 on U , so that
h ≤ 1. Further, let α denote the smaller of the two parameters appearing in the
denominator of the Gevrey class estimates (18) of f and g. Set β = α/3. Using
the Leibniz rule for the nth derivative of the product gh and rearranging terms, we
have

h(n) =
1

g

(
f (n) −

n−1∑
j=0

(
n

j

)
g(n−j) h(j)

)
. (66)

We now proceed by induction on n. For n = 0, the statement is obvious. Now
suppose that h satisfies a Gevrey class estimate of the form (18) with parameter β
up to order n− 1. Then

|h(n)(x)| ≤ n!2

αn
+ n!

n−1∑
j=0

(n− j)!
αn−j

j!

βj
≤ n!2

αn

(
1 +

3n−1

n!

n−1∑
j=0

(n− j)! j!
)
≤ n!2

βn
,

(67)

where the last inequality is based on the observation that

n−1∑
j=0

(n− j)! j! = n! +

n−1∑
j=1

(n− j)! j! ≤ n! + (n− 1) (n− 1)! ≤ 2n! (68)

and further that 1 + 2 · 3n−1 ≤ 3n. �
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