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ABSTRACT. We study the question of uniqueness of
solutions to cordial Volterra integral equations in the sense of
Vainikko (Numer. Funct. Anal. Optim. 30, 2009, pp. 1145–
1172) in the case where the kernel (or core) function
K(θ) ≡ K(y/x) vanishes on the diagonal x = y. When,
in addition, K is sufficiently regular, is strictly positive
on (0, 1), and θ−k K′(θ) is non-increasing for some k ∈ R,
we prove that the solution to the corresponding Volterra
integral equation of the first kind is unique in the class
of functions which are continuous on the positive real axis
and locally integrable at the origin. Alternatively, we obtain
uniqueness in the class of locally integrable functions with
locally integrable mean. We further discuss a uniqueness-
of-continuation problem where the conditions on the kernel
need only be satisfied in some neighborhood of the diagonal.
We give examples illustrating the necessity of the conditions
on the kernel and on the uniqueness class, and sketch the
application of the theory in the context of a nonlinear model.

1. Introduction. In this paper, we study the question of uniqueness
of solutions to weakly degenerate cordial Volterra integral equations of
the first kind, abbreviated as WDCVIE, which are integral equations
of the form

(1)
1

x

∫ x

0

K
(y
x

)
f(y) dy = g(x) ,

where the kernel (or core) function K : [0, 1] → R+ may be weakly
degenerate in the sense that K(θ) ∼ c (1−θ)α near θ = 1 with constants
c > 0 and α ∈ (0, 1). Setting y = xθ, we may write (1) in the equivalent
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form

(2)

∫ 1

0

K(θ) f(xθ) dθ = g(x) .

Formally, (1) is a Volterra integral equation of the first kind. Such
equations take the general form

(3)

∫ x

0

H(x, y) f(y) dy = g(x) .

The classical theory proceeds by differentiating with respect to x. As-
suming that g and H are continuously differentiable and H is non-
degenerate on the diagonal, i.e., H(y, y) 6= 0 for all y > 0, equa-
tion (3) can be converted into a Volterra integral equation of the sec-
ond kind. Then, contraction mapping arguments yield existence and
uniqueness of a solution in the class of continuous functions; see, e.g.,
[1, Theorem 1.4.1]. In our setting, however, H(x, y) = x−1K(y/x), so
H(y, y) = y−1K(1) = 0. Hence, the equation is degenerate and the
classical strategy of proof fails.

Vainikko [7, 8, 9] substantially generalized the class of admissible
kernels, coining the term cordial Volterra integral equation. His setting
is the following. Let I = (0, b) for some b ∈ R+ and let DI denote the
triangular domain

(4) DI = {(y, s) : y ∈ I, s ∈ [0, y]} .

For an integrable function K ∈ L1([0, 1]) and a continuous function
G ∈ C(DI), the left-hand side of (3) is called a cordial Volterra integral
operator if

(5) H(x, y) =
1

x
K
(y
x

)
G(x, y) ,

acting on an appropriate class of functions, for instance continuous
functions on I or essentially bounded measurable functions on I.

A good survey of what is known about cordial Volterra integral
equations can be found in the recent book by Brunner [1, Chapter
7, Section 1.4]. The result which, to the best of our knowledge, comes
closest to the situation considered here is [1, Theorem 7.2.15]. The
theorem states that if the kernels K ∈ C1((0, 1)) and G ∈ C(DI) satisfy
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(i) K ∈ L1([0, 1]) and

∫ 1

0

θ (1− θ)K′(θ) dθ <∞,

(ii)

∫ 1

0

K(θ) dθ > 0,

(iii) zK(θ) + θK′(θ) > 0 for θ ∈ (0, 1) and z < 1,
(iv) ∂xG ∈ C(DI) and G(y, y) 6= 0 for y ∈ I,

then equation (3) has a unique solution f ∈ C(I) for any g ∈ C1(I).
In our situation, however, the assumed asymptotic behavior near θ = 1
implies that K′(θ) → −∞ as θ → 1, so that condition (iii) cannot be
satisfied for any value of z. Therefore, this result is also not applicable
here.

In this paper, we focus on cordial Volterra operators with G ≡ 1.
We believe that the setting may be extended to cases where G is a
more general function. However, as the essential difficulty arises from
the weak degeneracy of K and our main example only requires G = 1,
we restrict to this case. Assuming that K is absolutely continuous
on [0, 1], strictly positive on (0, 1) with K(1) = 0, and that θ−k K′(θ)
is non-increasing for some k ∈ R, we prove that the solution to the
corresponding Volterra integral equation of the first kind is unique in
the class of functions which are continuous on the positive real axis and
locally integrable at the origin. Alternatively, we obtain uniqueness in
the class of locally integrable functions with locally integrable mean.
This class of functions is more general than the setting considered, e.g.,
in [7, 10] who study cordial Volterra integral operators on C(I).

The class of kernels considered in this paper includes, in particular,
kernels which are locally of root-type behavior near the diagonal, i.e.,
where K(θ) ∼ c (1−θ)α near θ = 1 with constants c > 0 and α ∈ (0, 1).
Moreover, when the positivity and concavity conditions on the kernel
are only satisfied in some neighborhood of the diagonal, we can still
formulate a uniqueness-of-continuation problem of the following type:
Suppose f ≡ 0 on some initial interval (0, x?) ⊂ I, is it true that f ≡ 0
on I?

Our motivation comes from studying extended solutions to a simpli-
fied Keller–Rubinow model for the formation of Liesegang precipitation
rings in the fast reaction limit [2, 3] where a weakly degenerate inte-
gral kernel arises naturally. Existence of solutions can be shown via
weak convergence techniques following ideas from Hilhorst et al. [4], so
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that the remaining nontrivial aspect is uniqueness, which we address
here. This problem can be formulated naturally as a uniqueness-of-
continuation question.

The question of existence of solutions in the setting considered here
is subtle and remains open. Direct contraction mapping arguments
appear to fail. Due to our results, this observation does not come as
a surprise because solutions with a singularity at zero may in general
exist, but integrability at zero is essential for selecting a unique solution.
Thus, any contraction mapping argument must build a reflection of the
uniqueness class into the Banach space on which the problem is posed.

To fix notation, we consider an interval I = (0, b) where either
b ∈ R+ or b = ∞. As we are only concerned with uniqueness, we
consider (1) with g ≡ 0. Uniqueness of solutions to (1) then amounts
to showing that

(6)

∫ 1

0

K(θ) f(xθ) dθ = 0

for all x ∈ I implies that f : I → R is necessarily zero within the class
of functions considered.

The paper is structured as follows. In Section 2, we introduce
shorthand notation for the assumptions on the kernel and prove several
auxiliary results. Section 3 contains our main result, Theorem 6,
followed by several extensions to the uniqueness class and the class
of kernels considered. The final Section 4 contains examples and
counterexamples which show that our results are substantially sharp.
This section also contains a sketch of the mathematical setup of the
Liesegang ring problem which spawned this investigation.

2. Preliminaries. We begin by introducing shorthand notation for
the necessary assumptions on the kernel K.

Definition 1 (Technical conditions). We say that a kernel K together
with two numbers k ∈ R and a ∈ [0, 1) satisfy technical conditions
T C(K, k, a) if

(i) K : [0, 1] → R+ is absolutely continuous on [0, 1] and strictly
positive on (a, 1) with K(1) = 0.
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(ii) The function θ−k K′(θ) is non-increasing on (a, 1) ∩ U ′, where
U ′ denotes the subset of [0, 1] on which K′ exists.

We note that U ′ is always a set of full measure. The technical
assumptions imply the following properties which we will need later.

Lemma 2. Assume that the triple (K, k, a) with k ∈ R and a ∈ [0, 1)
satisfies T C(K, k, a). Then there exists a? ∈ [a, 1) such that

(i) K′ < 0 on (a?, 1) ∩ U ′,
(ii) min

[θ1,θ2]
K = min{K(θ1),K(θ2)} for each pair a ≤ θ1 < θ2 ≤ 1,

(iii) θ−k−1K(θ) is non-increasing on (a?, 1).

Proof. First, we note that if K′(b) < 0 for some b ∈ (a, 1)∩U ′, then,
due to Definition 1(ii), K′(θ) < 0 for all θ ∈ (b, 1) ∩ U ′. Second, there
exists b ∈ (a, 1) ∩ U ′ such that K′(b) < 0, for otherwise

(7) K(θ) = K(1)−
∫ 1

θ

K′(σ) dσ ≤ 0

for all θ ∈ (a, 1). Thus,

(8) a? = inf{y ∈ U ′ ∩ (a, 1) : K′(y) < 0}

is well-defined and satisfies claim (i). Since K′ ≥ 0 on (a, a?]∩U ′ when
a? is given by (8), (ii) is a direct consequence.

To prove (iii), we consider the function h : (a?, 1)→ R,

(9) h(θ) = lnK(θ)− (k + 1) ln θ .

Clearly, h is absolutely continuous on each closed subinterval of (a?, 1).
Its derivative, defined on (a?, 1) ∩ U ′, reads

(10) h′(θ) =
K′(θ)
K(θ)

− k + 1

θ
.

Given b ∈ (a?, 1) ∩ U ′ we note that for all θ ∈ (b, 1) ∩ U ′,

(11) K′(θ) ≤
(θ
b

)k
K′(b) ,
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i.e., K′(θ) is bounded uniformly from above by some negative constant.
Hence, h′(θ) < 0 a.e. in some neighborhood of θ = 1, so that

(12) a?k ≡ inf{θ ∈ U ′ ∩ (a?, 1) : h′(θ) < 0} < 1 .

Re-defining a? ≡ a?k, we complete the proof. �

The next lemma is the key technical tool for our main result. It is
saying that a sufficiently smooth function which is initially zero and
which has a dense set of points where it is non-increasing in a certain
global sense must remain zero everywhere. The precise statement is
the following.

Lemma 3. Let b ∈ R+∪{∞}. Suppose g is continuously differentiable
on I = (0, b) and absolutely continuous on the closure of this interval
with the properties

(i) g(0) = 0 and
(ii) for every x1 ∈ I and for every x2 ∈ (x1, b) there exist y1 ∈

(0, x1) and y2 ∈ (x1, x2) such that |g(y1)| ≥ |g(y2)|.

Then g = 0.

Remark 4. We note that for every g ∈ C([0, b]), condition (ii) is
equivalent to the following. Let

(13) S = {x ∈ I : |g(y)| < |g(x)| for all y ∈ (0, x)}

denote the set of all points where g is larger in absolute value than
at any point to the left. Then (ii) is satisfied if and only if for every
x ∈ S in any right neighborhood of x there exists a point y ∈ (x, b)
such that |g(x)| > |g(y)|. An example of a function which satisfies
this requirement is shown in Figure 1. It is constructed as follows.
Take the function f(x) = x on the unit interval. Introduce a recursive
equipartition of this interval into pairs of subintervals of equal length.
At each new center node, inserted at step i = 1, 2, . . . relative to the
graph of f on [0, 1], cut the graph and insert a copy of the function

(14) v(x) =

{
1− x for x ∈ [0, 1] ,

x− 1 for x ∈ (1, 2]
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Figure 1. Example of a nonzero function which satisfies conditions
(i) and (ii) of Lemma 3, but is insufficiently smooth. This example
demonstrates that some regularity requirement is necessary.

with width scaled by 21−2i and height scaled by 21−i. This defines
a function g on the interval [0, 3] with g(0) = 0 which is continuous
and which clearly satisfies the equivalent reformulation of condition
(ii). This example shows that continuity is insufficient to conclude
that the function is zero under conditions (i) and (ii); at least some
uniformity in the modulus of continuity is required as is implied by the
differentiability assumption in the statement of Lemma 3.

Proof of Lemma 3. Consider the function h : [0, b]→ R+,

(15) h(y) = max
z∈[0,y]

|g(z)| ,

set

(16) C = {y : h(y) = |g(y)|} ,

and define O = (0, b) \ C. Since h and g are continuous, C is closed and
O is open. We will show that h is non-increasing. By construction, h is
constant on each connected component of O. Further, h is absolutely
continuous. Indeed, fix x1, x2 ∈ [0, b] with x1 < x2 < ∞ and select
the leftmost xl ∈ C not less than x1 and the rightmost xr ∈ C not
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bigger than x2, if available. If xl and xr do not exist, then obviously
[x1, x2] ⊂ O or h(x1) = h(x2). Otherwise, h(x1) = |g(xl)| and
h(x2) = |g(xr)|, so that

(17) h(x2)−h(x1) ≤ |g(xr)−g(xl)| =
∣∣∣∣∫ xr

xl

g′(y) dy

∣∣∣∣ ≤ ∫ x2

x1

|g′(y)|dy .

This proves that h is absolutely continuous on [0, b].

We now look at the growth of g and h in C. Fix z ∈ C with z 6= 0
and z 6= b. For simplicity, assume that g(z) ≥ 0 so that

(18) h(z) = g(z) =

∫ z

0

g′(x) dx .

The argument which follows is easily adapted to the case g(z) < 0. Our
goal is to show that g′(z) = 0. First, suppose that g′(z) < 0. Then, by
continuity of g′,

(19) h(z) =

∫ z

0

g′(x) dx <

∫ z−ε

0

g′(x) dx = g(z − ε) ≤ h(z − ε)

for ε > 0 sufficiently small. This is a contradiction as h is non-
decreasing. Now suppose that g′(z) > 0. In assumption (ii), let x1 = z.
Invoking continuity once again, we obtain

(20) h(z) =

∫ z

0

g′(x) dx <

∫ y2

0

g′(x) dx = g(y2)

for every y2 ∈ (z, z + ε] with ε > 0 sufficiently small. Hence,

(21) |g(y1)| ≤ h(z) < g(y2)

for all y1 ∈ [0, z] and y2 ∈ (z, z + ε]. This statement contradicts
assumption (ii) with x1 = z and x2 = z + ε. We conclude that the
only case possible is g′(z) = 0.

Since h is absolutely continuous, it has a weak derivative h′ which,
by construction, vanishes on O and satisfies h′ = |g′| a.e. on C (in fact,
in the interior of C, this identity is true in the classical sense as h = |g|



WEAKLY DEGENERATE CORDIAL VOLTERRA EQUATIONS 9

and g′ cannot change sign), so that

h(x2)− h(x1) =

∫ x2

x1

h′(x) dx =

∫
[x1,x2]∩C

h′(x) dx(22)

=

∫
[x1,x2]∩C

|g′(y)|dy = 0 .

Thus, h = 0 on [0, b] and so is g. �

Remark 5. Lemma 3 remains true under the assumption that g′ is
essentially continuous almost everywhere, i.e.,

(23) lim
ε↘0

ess sup
[z−ε,z+ε]∩[0,b]

g′ = lim
ε↘0

ess inf
[z−ε,z+ε]∩[0,b]

g′ for a.e. z ∈ (0, b) .

Indeed, inequality (17) is preserved under condition (23), so that h is
absolutely continuous. Further, the argument from (19) to (21) remains
valid on every point of continuity in sense of (23) within C, i.e. almost
everywhere. This suffices to complete the proof as before.

3. Main results. Our main uniqueness result is Theorem 6 below.
The result covers two cases. The first, simpler case has a = 0 in the
technical condition, Definition 1. This means we have good control
on the behavior of the kernel K on its entire interval of definition. It
turns out that most of the difficulty comes from the weakly degenerate
local asymptotics near θ = 1. This is used in the second, more subtle
case when a ∈ (0, 1) in the technical conditions. In this case, we only
assume control on the kernel in some neighborhood of 1. Without global
control on the kernel, all we can prove is a uniqueness-of-continuation
result: provided a solution to the WDCVIE (1) on some interval [0, x?]
for x? > 0 fixed is given, we show that, under certain conditions, its
extension to a larger interval is unique. In our formulation (6), this
amounts to assuming that f is known to be zero on some fixed interval
[0, x?] of positive length. The key steps of the proof are the same in
both cases, with few differences which are related to how the respective
assumptions enter the key estimates. For this reason, we formulate
theorem and proof in a way that covers both cases at once.

A key question throughout this section is the appropriate function
class in which uniqueness holds. Initially, we work with functions that
are continuous on their open interval of definition (0, b), but may have
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an integrable singularity at zero. Integrability is crucial, as Example 4
in Section 4 demonstrates. We encode this local integrability condition
by requiring membership in a local Lebesgue space, defined in the usual
way,

(24) L1
loc([0, b)) = {f measurable :

f ∈ L1((α, β)) for every 0 ≤ α < β < b} .

When looking at uniqueness-of-continuation, local integrability is triv-
ially satisfied. Moreover, for some admissible kernels the requirement
that the WDCVIE makes sense in the first place already imposes local
integrability near zero; see the discussion in Remarks 7 and 13. In this
situation, local integrability is not a selection criterion between differ-
ent otherwise admissible solutions, but rather is a basic feature of the
equation itself.

The theorem is followed by three corollaries in which we re-formulate
the problem in slightly different terms, thereby extending the unique-
ness class and the class of admissible kernels.

Theorem 6 (Main theorem). Assume that the triple (K, k, a) with
k ∈ R and a ∈ [0, 1) satisfies T C(K, k, a). Let I = (0, b) for some
b ∈ R+ ∪ {∞}. Suppose f ∈ C(I) ∩ L1

loc([0, b)) with, moreover,

(i) K(0) = 0 or K(0) > 0 and k ≥ −1 if a = 0, or
(ii) there exists x? > 0 such that f(x) = 0 for x ∈ [0, x?] if

a ∈ (0, 1),

satisfies the homogeneous WDCVIE

(25)

∫ 1

0

K(θ) f(xθ) dθ = 0

for all x ∈ I. Then f ≡ 0 on I.

Remark 7. When a = 0 and K(0) > 0, the integrability requirement
f ∈ L1

loc([0, b)) is already implied by the requirement that f satisfies the
WDCVIE in the Lebesgue sense. Indeed, when K(0) > 0, then K > 0
on [0, 1) and Lemma 2(ii) implies that min[0,θ]K = min{K(0),K(θ)}
for any θ ∈ (0, 1). So, for each pair x ∈ I and z > 1 such that xz ∈ I,
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we have 0 < min{K(0),K(z−1)} and

(26) min{K(0),K(z−1)}
∫ x

0

|f(y)|dy ≤
∫ x

0

∣∣∣K( y
xz

)
f(y)

∣∣∣ dy <∞ .

Thus, the WDCVIE implies local integrability near zero. In this case,
local integrability is not a selection criterion to disambiguate between
otherwise admissible solutions, but is a core requirement to make sense
of the equation.

Proof of Theorem 6. Since f ∈ L1
loc([0, b)), its anti-derivative

(27) g(y) =

∫ y

0

f(z) dz

is absolutely continuous on I and bounded on every interval of the
form [0, x] with x ∈ (0, b). Moreover, since K is absolutely continuous,
g(y)K′(y/x) is integrable and g(y)K(y/x) is absolutely continuous on
every such interval, so that, via integration by parts,

(28)
1

x

∫ x

0

g(y)K′
(y
x

)
dy = g(y)K

(y
x

)∣∣∣∣x
0

−
∫ x

0

f(y)K
(y
x

)
dy = 0 .

Multiplying this equation with xk+1, we infer that

(29) xk
∫ x

0

g(y)K′
(y
x

)
dy = 0 .

We now fix a pair x1, x2 ∈ I as follows. When a = 0, we fix
x1 arbitrarily, then choose any x2 ∈ (x1, x1/a

?) ∩ I, where a? is the
constant from Lemma 2. In this case, we understand the computations
which follow with the provision that x? = 0. When a ∈ (0, 1), we
choose x1 ∈ (x?, x?/a?), then x2 ∈ (x1, x

?/a?). We note that in the
second case, the inequality x2 < x1/a

? also holds true by construction.
Now define F : R+ → R by

(30) F (y) = xk+1
2 K

( y
x2

)
− xk+1

1 K
( y
x1

)
,

with the understanding that K(θ) = 0 for θ > 1. F is absolutely con-
tinuous on the interval [0, x2]. Hence, F ′ is defined almost everywhere
on [0, x2]; we write UF to denote its domain of definition. By direct
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computation,

(31) F ′(y) =


xk2 K′

( y
x2

)
− xk1 K′

( y
x1

)
for y ∈ [0, x1] ∩ UF ,

xk2 K′
( y
x2

)
for y ∈ (x1, x2) ∩ UF .

Due to (29),

(32)

∫ x2

0

g(y)F ′(y) dy = 0 .

Since g is zero on [0, x?], this implies

(33)

∫ x1

x?

g(y)F ′(y) dy = −
∫ x2

x1

g(y)F ′(y) dy .

When y ∈ (x1, x2) ∩ UF , then a? < y/x2. Hence, due to (31) and
Lemma 2(i), F ′(y) is negative and

(34) 0 >

∫ x2

x1

F ′(y) dy = F (x2)− F (x1) = −xk+1
2 K

(x1
x2

)
.

When y ∈ (0, x1) ∩ UF , due to Definition 1(ii),

(35) F ′(y) = yk
(( y

x2

)−k
K′
( y
x2

)
−
( y
x1

)−k
K′
( y
x1

))
is non-negative, so that

(36) 0 ≤
∫ x1

x?

F ′(y) dy = xk+1
2 K

(x1
x2

)
−xk+1

2 K
(x?
x2

)
+xk+1

1 K
(x?
x1

)
.

Now the key observation is that the sum of the last two terms on the
right is non-positive. Indeed, when a = 0, hence x? = 0, this statement
is true by direct inspection given assumption (i) of this theorem; when
a ∈ (0, 1), hence x? > 0, it follows from Lemma 2(iii), which applies
as our construction ensures that x?/x1 and x?/x2 lie in the interval
(a?, 1). Combining this observation with (34) and (36), we obtain

(37)

∣∣∣∣∫ x1

x?

F ′(y) dy

∣∣∣∣ ≤ ∣∣∣∣∫ x2

x1

F ′(y) dy

∣∣∣∣ .
On the other hand, since F ′ does not change sign on each of its intervals
of definition, we may apply the integral mean value theorem on both
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sides of (33). It asserts that there exist y1 ∈ (x?, x1) and y2 ∈ (x1, x2)
such that

(38) g(y1)

∫ x1

x?

F ′(y) dy = −g(y2)

∫ x2

x1

F ′(y) dy .

Due to (34), the integral on the right is non-zero. Then, comparing
(37) and (38), we conclude that |g(y1)| ≥ |g(y2)|.

Summarizing, when a = 0, we have shown that for every x1 ∈ I and
every x2 ∈ (x1, b) there exist y1 ∈ (0, x1) and y2 ∈ (x1, x2) such that
|g(y1)| ≥ |g(y2)|. Lemma 3 applies directly and yields g = 0 on I.

When a ∈ (0, 1), we have shown that for every x1 ∈ (x?, x?/a?) ∩ I
and every x2 ∈ (x1, b) there exist y1 ∈ (x?, x1) and y2 ∈ (x1, x2) such
that |g(y1)| ≥ |g(y2)|. Lemma 3 applies after translating x? into the
origin and proves that g = 0 on [0, x?/a?) ∩ I. We can now iterate
the entire argument with x? replaced by x?/a?, exhausting the entire
interval I after a finite, when b is finite, or countable, when b = ∞
number of iterations.

Since now g = 0 on I, f = 0 on I follows from (27). �

Remark 8. Theorem 6 remains valid if the condition f ∈ C(I) is
replaced by assuming essential continuity of f , see Remark 5.

Remark 9. Local integrability does not imply essential continuity. We
present one easy example. Mimicking the construction of the Cantor
set, we fix δ > 0, start with C0 = [0, 1], and iteratively construct
a sequence of sets Cn for n ∈ N by removing a centered piece of
length 1/(3 + δ)n from each of the 2n−1 intervals of level Cn−1. Let
C = ∩∞n=1Cn and set f(z) = IC(z), where IC denotes the indicator
function of the set C. We show that is not essentially continuous on C
in sense of (23). First, note that the measure of Cc = [0, 1] \ C is

(39) m(Cc) =

∞∑
n=1

2n−1

(3 + δ)n
=

1

1 + δ
< 1 ,

so m(C) > 0. Fix z ∈ C and ε > 0 small enough. Let n = dlog2 εe − 1.
The set Cn contains 2n equal closed intervals; we write Iz,ε ⊂ [z−ε, z+ε]
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to denote the interval that contains z. Then, on the one hand,

(40) m(C ∩ Iz,ε) =
1

2n
m(C) =

δ

2n(1 + δ)
> 0 ,

so that ess sup[z−ε,z+ε] f = 1. On the other hand, Cc ∩ Iz,ε contains at
least one center interval of the level n+ 1, which implies

(41) m(Cc ∩ Iz,ε) ≥
1

(3 + δ)n+1
> 0 ,

so that ess inf [z−ε,z+ε] f = 0.

Remark 10. Let G be another kernel such that G(θ) = θnK(θ) with K
satisfying T C(K, k, a) for some k ∈ R and a ∈ [0, 1). Assume that

(42)

∫ 1

0

G(θ)h(xθ) dθ = 0

for all x ∈ I. Then Theorem 6 implies that h = 0 on I within the class
of functions where f(z) = zn h(z) conforms to the the continuity and
integrability conditions in the theorem, as

(43)

∫ 1

0

K(θ)f(xθ) dθ = xn
∫ 1

0

G(θ)h(xθ) dθ = 0 .

The essentially continuous functions, as Remark 9 shows, are in some
sense a small class of functions, so that we investigate other means of
enlarging the uniqueness class in which a statement of the form of
Theorem 6 is true. Here and in the following, denote the average of a
function h ∈ L1

loc([0, b)) by

(44) h̄(y) =
1

y

∫ y

0

h(z) dz .

Corollary 11. The statement of Theorem 6 remains valid if the
continuity requirement on f is relaxed as follows:

(i) f ∈ {h ∈ L1
loc([0, b)) : h̄ ∈ L1

loc([0, b))} if a = 0,
(ii) f ∈ {h ∈ L1

loc([0, b)) : supph ⊂ [x?, b)} for some x? ∈ (0, b) if
a ∈ (0, 1).
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Remark 12. The integrability requirement on f̄ in part (i) is not implied
by the assumption f ∈ L1

loc([0, b)). For example, f(x) = 1/(x ln2 x)
is integrable on [0, e−1] with f̄(x) = −1/(x lnx). However, f̄ is not
integrable on [0, e−1].

Remark 13. As in the statement of Theorem 6, the integrability
requirement f ∈ L1

loc([0, b)) is already implied by the requirement
that f satisfies the WDCVIE in the Lebesgue sense in the following
cases. When a = 0 and K(0) > 0, we can apply the argument
from Remark 7 to prove local integrability. When a ∈ (0, 1), we
can proceed similarly. By the requirement f = 0 on [0, x?), applying
Lemma 2(i) and (ii), we observe that for any x > x? with x?/x > a?,
0 < min{K(x?/x),K( 1

2 (x?/x+ 1))} and

(45) min{K(x?/x),K( 1
2 (x?/x+ 1))}

∫ 1
2 (x

?+x)

x?

|f(y)|dy

≤
∫ x

0

∣∣∣K(y
x

)
f(y)

∣∣∣ dy <∞ .

This argument can be iterated to prove integrability on the entire
domain. In these cases, local integrability is not a selection criterion
to disambiguate between otherwise admissible solutions, but is a core
requirement to make sense of the equation.

Proof of Corollary 11. To proceed, we need f̄ to be locally integrable
near zero. In case (i), this is explicitly assumed. In case (ii), this follows
from f ∈ L1

loc([0, b)) and f(x) = 0 on the interval [0, x?]. Without
distinguishing the two cases further, we observe that∫ 1

0

K(θ) f̄(xθ) dθ =
1

x

∫ 1

0

K(θ)

∫ x

0

f(yθ) dy dθ(46)

=
1

x

∫ x

0

∫ 1

0

K(θ) f(yθ) dθ dy = 0 ,

where, in the first equality, we have changed variables z = yθ and in the
second equality, we changed the order of integration; the Fubini–Tonelli

theorem applies since x
∫ 1

0
|K(θ) f̄(xθ)|dθ is finite. Thus, f̄ satisfies the

assumptions of Theorem 6, which implies that f̄ = 0 on I. This implies
f = 0 as well. �
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Corollary 14. In the case a = 0, the statement of Theorem 6 remains
valid if f is assumed to be of class L∞(I).

Proof. Note that f̄ is bounded and continuous on I, so that the
argument of Corollary 11 applies. �

The integrability condition on f̄ is essential here. For some other
kernels this condition may be relaxed as follows.

Corollary 15. Let I = (0, b) for some b ∈ R+∪{∞}. Assume that the
kernel K satisfies T C(K, k, 0) for some k ≥ −1. Let G(θ) = θαK(θ) for
some α > 0. If f ∈ L1

loc([0, b)) and satisfies

(47)

∫ 1

0

G(θ) f(xθ) dθ = 0 for all x ∈ I ,

then f ≡ 0.

Proof. The function

(48) h(y) = yα−1
∫ y

0

f(z) dz

is continuous on I and locally integrable on [0, b). Indeed, for any
b? ∈ (0, b) and all y ∈ (0, b?),

(49) |h(y)| ≤ yα−1
∫ b?

0

|f(z)|dz ,

where the right side is integrable on (0, b?). As in the proof of
Corollary 11, we compute∫ 1

0

K(θ)h(xθ) dθ = xα−1
∫ 1

0

θαK(θ)

∫ x

0

f(yθ) dy dθ(50)

= xα−1
∫ x

0

∫ 1

0

G(θ) f(yθ) dθ dy = 0 .

Thus, by Theorem 6, h = 0 on I. This implies f = 0. �

4. Examples and counterexamples. In the following we give
examples of kernels which satisfy suitable technical conditions. We
also show that when the technical condition cannot be satisfied, the
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homogeneous WDCVIE may have a bounded continuous nontrivial
solution; vice versa, when the kernel satisfies a technical condition, non-
trivial solutions may still exist outside of the stated class of solutions.
Finally, we sketch the context in which a homogeneous WDCVIE
arises in a simplified version of the Keller–Rubinow model for chemical
precipitation bands.

Example 1 (Concave kernels). Any absolutely continuous concave ker-
nel satisfies T C(K, 0, 0). Theorem 6 and Corollary 11 apply and restrict
existence of nontrivial solutions to the homogeneous WDCVIE.

Example 2 (Uniqueness in the convex case). Consider the kernel K(θ) =
1 − θk for k ∈ (0, 1). K is convex as K′(θ) = −k θk−1 and K′′(θ) =
−k (k − 1) θk−2 > 0. Nevertheless, K satisfies T C(K, k − 1, 0), hence
the same theorems apply.

In the next two examples, for simplicity, we resort to kernels which
are not weakly degenerate in the sense that K′(θ) → −∞ as θ → 1,
but they are fully covered by the theorems and serve to illustrate the
scope and limitations of our results. We begin by constructing a convex
kernel which fails to be T C(K, k, 0) for any k ≥ −1. We show that the
corresponding homogeneous WDCVIE has many non-trivial solutions.

Example 3 (Non-uniqueness due to a convex corner). Consider any
positive k1 and k2 such that k1 > 5 k2. Let

(51) K(θ) =


k1 + k2

2
− k1 θ for θ ∈ [0, 12 ] ,

k2 − k2 θ for θ ∈ [ 12 , 1] .

Clearly, K is convex but fails to be T C(K, k, 0) for any k ∈ R as

(52) lim
θ↗ 1

2

K′(θ)
θk

= −2k k1 < −2k k2 = lim
θ↘ 1

2

K′(θ)
θk

.

Now take any continuous function f on [1, 2] with f(1) = f(2) = 0.
Extend its domain of definition recursively to (0,∞) via

(53) f
(x

2

)
= − 4 k2

k1 − k2
f(x) .
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Noting that

(54) max
x∈[2−n−1,2−n]

|f(x)| = 4 k2
k1 − k2

max
x∈[2−n,2−n+1]

|f(x)| ,

further extend f to a continuous function on [0,∞) by setting f(0) = 0.
Obviously, f is locally integrable near x = 0, so that

(55) F (x) =

∫ x

0

K
(y
x

)
f(y) dy

is well-defined. Differentiating (see, e.g., [6] for differentiation under
the integral sign), we obtain

F ′(x) = − 1

x2

∫ x

0

K′
(y
x

)
y f(y) dy(56)

=
k1
x2

∫ x/2

0

f(y) y dy +
k2
x2

∫ x

x/2

f(y) y dy .

Further, by the fundamental theorem of calculus and (53),

(57) (x2F ′(x))′ =
k1
2
f
(x

2

) x
2

+ k2

(
f(x)x− 1

2
f
(x

2

) x
2

)
= 0 .

Hence, x2 F ′(x) = C and, for any x > 0,

(58) F (x) = F (1) + C
(

1− 1

x1

)
.

As F (0) = 0, we must have C = 0, hence F ≡ 0. This proves that f is a
solution to the homogeneous WDCVIE; clearly, there are uncountably
many of such solutions.

The next example demonstrates a case where the kernel is concave,
hence is T C(K, 0, 0), yet there is a non-integrable solution to the
WDCVIE. In other words, there exist nontrivial solutions that lie
outside of the uniqueness classes stated in our theorems.

Example 4 (Non-integrable solution). Let K be defined by (51) with
k1 = 1 and k2 = −1. Clearly, K is concave. The construction of the
solution follows (53): we take a non-zero continuous function f on [1, 2]
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with f(1) = f(2) = 0 and

(59)

∫ 2

1

f(y) dy = 0

and extend it recursively to (0,∞) via

(60) f
(x

2

)
= 2 f(x) .

First, note that

(61)

∫ 2i+1

2i
|f(x)|dx =

∫ 2i

2i−1

|f(x)|dx .

So f is not locally integrable near y = 0 so that it is not subject to
any of our theorems. Next, we show that f solves the homogeneous
WDCVIE. Let G(θ) = θ−1K(θ), so G is absolutely continuous and

(62) G′(θ) =

{
0 for θ ∈ [0, 12 ) ,

−θ−2 for θ ∈ ( 1
2 , 1] .

We note that y f(y) is bounded. Indeed, for all i ∈ Z

(63) max
y∈[2i−1,2i]

|y f(y)| ≤ 2i max
y∈[2i−1,2i]

|f(y)| = 2 max
y∈[1,2]

|f(y)| .

Therefore,

(64) F (x) =

∫ x

0

y f(y)G
(y
x

)
dy

is differentiable with

(65) F ′(x) =

∫ x

x/2

f(y) dy .

Fix x ∈ (0,∞) and select n ∈ Z such that x/2 < 2n ≤ x. Then, due to
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(60), we obtain

(−1)n F ′(x) =

(∫ 2n

x
2

+

∫ x

2n

)
f(y) dy

=

(∫ 2n+1

x

+

∫ x

2n

)
f(y) dy =

∫ 2n+1

2n
f(y) dy

=

∫ 2

1

f(y) dy = 0 .

Hence, F is constant. Since y f(y) and G are bounded, limx↘0 F (x) =
0, so F ≡ 0. Finally,

(66)

∫ x

0

f(y)K
(y
x

)
dy =

1

x

∫ x

0

y f(y)G
(y
x

)
dy = 0

for every x > 0. We conclude that f is a nonintegrable function,
continuous on (0,∞), which solves the homogeneous WDCVIE.

Example 5 (Simplified Keller–Rubinow model for Liesegang precipita-
tion rings). Our motivating example is the study of a simplified version
of the Keller–Rubinow model for Liesegang precipitation rings. For the
model setup, we refer the reader to [2, 3, 4, 5]. Mathematically, the
problem can be stated as follows. Find ω ∈ C([0, b)) which satisfies the
integral equation

(67) ω(x) = Γ− x2
∫ 1

0

K(θ)H(ω(xθ)) dθ ,

where Γ is a positive constant, H denotes the Heaviside function and
K is a kernel, continuous on [0, 1] and C2 on [0, 1), with the following
properties:

(i) K(0) = K ′(0) = 0,
(ii) K(θ) ∼ c

√
1− θ as θ → 1 for some c > 0,

(iii) K(θ) is non-negative and unimodal, i.e., there exists θ? ∈ (0, 1)
such that K ′′(θ) > 0 for θ ∈ (0, θ?) and K ′′(θ) < 0 for
θ ∈ (θ?, 1).

In [3], we show that solutions to (67) necessarily have a finite interval
[0, x?) of existence. They can be continued past x?, the point of
breakdown, as extended solutions, namely pairs (ω, ρ) where ω ∈
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C([0,∞)) and which satisfy

(68) ω(x) = Γ− x2
∫ 1

0

K(θ) ρ(xθ) dθ

and where ρ takes values from the Heaviside graph, i.e.,

(69) ρ(y) ∈ H(ω(y)) =


0 if ω(y) < 0 ,

[0, 1] if ω(y) = 0 ,

1 otherwise .

Extended solutions can be shown to exist. Uniqueness on the interval
[0, x?) is elementary, but uniqueness past x? is not obvious.

We say that (ω, ρ) is a regularly extended solution if ω is identically
zero on some interval [x?, b) past the point of breakdown. We observe
that the question of uniqueness of regularly extended solutions is
clearly of the type covered by Theorem 6 with a > 0, i.e., it is a
problem of uniqueness-of-continuation type. Properties (ii) and (iii)
imply T C(K, 0, a) for some a ∈ (0, 1), so that Theorem 6 implies that
regularly extended solutions to the model as stated above are indeed
unique. Further, any (regularly or non-regularly) extended solution is
only determined by ω, i.e., given ω, the corresponding function ρ is
unique.

We further remark that [2] discusses some concrete kernels repre-
senting concrete choices of parameters in the modeling context. Nu-
merical verification shows that for each of these kernels, there exists
a choice of α > 0 such that the assumptions of Corollary 15 are sat-
isfied, thus asserting uniqueness of the abstract linear WDCVIE with
the given kernel.
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