Engineering and Science Mathematics I Standard Track

Midterm I

October 9, 2002

1. Compute the following limits.
(a) $\lim _{z \rightarrow 3} \frac{2-\sqrt{1+z}}{3-z}$
(b) $\lim _{r \rightarrow-1} \frac{r^{2}-1}{2 r^{2}+3 r+1}$
(c) $\lim _{w \rightarrow 0} \frac{w}{\sin \sqrt{w}}$

$$
(5+5+5)
$$

2. The following functions are discontinuous at a point. Can you remove the discontinuity? Explain.
(a) $g(y)=y^{2} \cos \frac{1}{y}$
(b) $h(\theta)=\frac{\theta}{|\theta|}$
(c) $\psi(r)=\frac{r}{1-\cos r}$
3. Differentiate the following functions.
(a) $\ell(t)=\frac{(\sin t)^{2}}{\cos t}$
(b) $m(p)=e^{-\ln p}$
(c) $n(q)=\frac{\sin \left(q^{2}\right)}{\cos q}$
4. Find all points (x, y) on the graph of $x^{2 / 3}+y^{2 / 3}=8$ where lines tangent to the graph have slope 1 .
5. Use the definition of the derivative to show that $\cos ^{\prime} \theta=-\sin \theta$.
6. Find the global minimum and maximum values, if they exist, of the function

$$
\begin{equation*}
f(x)=\frac{x^{2}+1}{(x-1)^{2}} \tag{10}
\end{equation*}
$$

7. A square sheet of cardboard of width W will be made into a box by cutting equal-sized squares from each corner and folding up the four edges. What will be the dimensions of the box with largest volume?
8. A farmer owns a 10 km long stretch of land between two parallel rivers that are 2 km apart. What is the area of the largest rectangular corral he can enclose with
(a) 2 km of fencing,
(b) 5 km of fencing,
assuming that no fence is needed along the river.
