Partial Differential Equations

Final Exam

December 19, 2002

Get 50 out of $\mathbf{7 0}$ points for a 100% score.

1. (a) Show that the Fourier transform for $f: \mathbb{R} \rightarrow \mathbb{R}$,

$$
f(x)=e^{-t|x|}
$$

is given by

$$
\hat{f}(\xi)=\sqrt{\frac{2}{\pi}} \frac{t}{\xi^{2}+t^{2}}
$$

(b) Use the result from (a) to solve the 1-dimensional differential equation

$$
u_{x x}-u=\delta,
$$

where δ is the Dirac measure centered at $x=0$.
2. Assume that $u \in C^{3}\left(\mathbb{R}^{n} \times[0, \infty)\right)$ solves the heat equation

$$
u_{t}=\Delta u
$$

Prove that $v \equiv|D u|^{2}+u_{t}^{2}$ is a subsolution of the heat equation, i.e.

$$
\begin{equation*}
v_{t} \leq \Delta v \tag{10}
\end{equation*}
$$

3. Find an a priori estimate which can be used to prove that if $u \in H^{1}(\mathbb{R})$, then u is continuous.
Hint: Use the Fundamental Theorem of Calculus to estimate $|u(x)-u(y)|$.
4. Show that

$$
E(t)=\frac{1}{2} \int_{\mathbb{R}} u_{t}^{2} d x+\frac{1}{2} \int_{\mathbb{R}} u_{x}^{2} d x
$$

is a constant in time for smooth solutions $u: \mathbb{R} \times[0, \infty) \rightarrow \mathbb{R}$ with compact support in space of the wave equation

$$
\begin{equation*}
u_{t t}-u_{x x}=0 . \tag{10}
\end{equation*}
$$

5. A function G_{L} is called the Green's Function of a linear partial differential operator L if

$$
L G_{L}=\delta
$$

where δ is the Dirac measure centered at zero. Show, given two partial linear differential operators A and B with $A+B=1$, that

$$
G_{A B}=G_{A}+G_{B}
$$

Note: You may assume without further discussion that expressions like $A \delta$ and $B \delta$ can be made sense of.
6. Consider the initial value problem for Burger's equation

$$
\begin{gathered}
u_{t}+u u_{x}=0 \\
u(0)=u^{\text {in }}
\end{gathered}
$$

where $u: \mathbb{R} \times[0, \infty) \rightarrow \mathbb{R}$, and we write $u(t)$ as shorthand for $u(\cdot, t)$.
(a) Show that, provided $u \in C^{1}(\mathbb{R} \times[0, \infty))$ and $u^{\text {in }} \in L^{2}(\mathbb{R})$,

$$
\begin{equation*}
\|u(t)\|_{L^{2}}=\left\|u^{\mathrm{in}}\right\|_{L^{2}} . \tag{*}
\end{equation*}
$$

(b) Show that, provided $u \in C^{1}(\mathbb{R} \times[0, \infty))$,

$$
\begin{equation*}
\int_{0}^{\infty} \int_{\mathbb{R}}\left(\phi_{t} u+\frac{1}{2} \phi_{x} u^{2}\right) d x d t=-\int_{\mathbb{R}} \phi(x, 0) u^{\mathrm{in}}(x) d x \tag{**}
\end{equation*}
$$

for every test function $\phi \in C^{1}(\mathbb{R} \times[0, \infty))$ with compact support.
(c) It is known that for $0 \leq t \leq 2$ the following function is a so-called entropy solution of Burger's equation:

$$
u(x, t)= \begin{cases}0 & \text { for } x \leq 0 \\ \frac{x}{t} & \text { for } 0<x<t \\ 1 & \text { for } t \leq x<1+\frac{t}{2} \\ 0 & \text { for } x \geq 1+\frac{t}{2}\end{cases}
$$

Show, by direct calculation, that u does not satisfy $\left({ }^{*}\right)$.
(d) Show, again by direct calculation, that u as defined in (c) satisfies $\left({ }^{* *}\right)$.

