Partial Differential Equations

Homework 3

due October 7, 2002

1. Prove that the Taylor series with integral remainder for a function $u \in C^{N}\left(\mathbb{R}^{n}\right)$ is

$$
u(x)=\sum_{|\alpha| \leq N-1} \frac{D^{\alpha} u\left(x_{0}\right)}{\alpha!}\left(x-x_{0}\right)^{\alpha}+R_{N}
$$

where

$$
R_{N}=N \sum_{|\alpha|=N} \frac{\left(x-x_{0}\right)^{\alpha}}{\alpha!} \int_{0}^{1}(1-t)^{N-1} D^{\alpha} u\left(x_{0}+t\left(x-x_{0}\right)\right) d t .
$$

Hint: Apply the one-dimensional Taylor formula with integral remainder to the function $f(s)=u\left(x_{0}+s\left(x-x_{0}\right)\right)$.
2. Evans, p. $86 / 87$ problems 5 and $6,8$.

