Partial Differential Equations

Homework 6

due November 13, 2002

In the following, \mathbb{T} denotes the 1-torus, i.e. $\mathbb{T} = \mathbb{R} \mod 2\pi$.

1. (a) Show that, for every $u \in L^r(\mathbb{T})$ with $2 \leq r < \infty$,

$$||u||_{L^2} \le (2\pi)^{\frac{r-2}{2r}} ||u||_{L^r}.$$

Hint: Hölder inequality.

(b) Consider the Fisher–Kolmogorov equation on \mathbb{T} ,

$$u_t = u_{xx} + (1 - u) u^m,$$

 $u(0) = u^{\text{in}},$

where m is an even positive integer. Use the result from (a) to sharpen the L^2 estimate derived in the lecture as follows: Show that

$$\limsup_{t \to \infty} \left\| u(t) \right\|_{L^2} \le C$$

where an explicit estimate for C can be given which, in particular, shows that C does not depend on the initial data u^{in} .

- 2. Show that if $u^{\text{in}} \ge 0$, the solution u(t) to the Fisher–Kolmogorov equation remains nonnegative for every $t \ge 0$. You may assume that u is as smooth as you need. Hint: This is similar to question 1 of the previous homework.
- 3. Let $\{u_n\} \subset L^2(U)$ be a weakly convergent sequence. Show that $\{u_n\}$ is bounded.
- 4. (a) Prove the following elementary version of the *Rellich Theorem*: The embedding H^t(T) → H^s(T) is compact for all real numbers s < t. This is equivalent to saying that if u_n → u weakly in H^t(T), then u_n → u strongly in H^s(T).

Hints: WLOG u = 0; use the Fourier series representation of the H^s norms.

(b) Use the result from part (a) to show that for every T > 0 the embedding

$$L^2([0,T]; L^2(\mathbb{T})) \longleftrightarrow C([0,T]; \mathrm{w}-L^2(\mathbb{T})) \cap \mathrm{w}-L^2([0,T]; \mathrm{w}-H^1(\mathbb{T}))$$

is compact, where the intersection on the right side is endowed with the relative topology induced by the inclusion map. In other words, a sequence converges in the intersection iff it converges in each of the spaces separately.