Numerical Methods I

The Gradient and Conjugate Gradient Method
Marcel Oliver

1 Reformulation as an Optimization Problem

Let $A \in \mathbb{R}^{n \times n}$ be a symmetric, positive definite matrix. Then $A \boldsymbol{x}=\boldsymbol{b}$ if and only if \boldsymbol{x} minimizes the function

$$
\begin{equation*}
\Phi(\boldsymbol{x})=\frac{1}{2} \boldsymbol{x}^{T} A \boldsymbol{x}-\boldsymbol{x}^{T} \boldsymbol{b} \tag{1}
\end{equation*}
$$

Proof. Assume first that \boldsymbol{x} is a minimizer of Φ. Thus, $\Phi(\boldsymbol{x}+\lambda \boldsymbol{v})$ must have a minimum at $\lambda=0$ for any fixed vector $\boldsymbol{v} \in \mathbb{R}^{n}$. In other words,

$$
\begin{equation*}
\left.\frac{d}{d \lambda} \Phi(\boldsymbol{x}+\lambda \boldsymbol{v})\right|_{\lambda=0}=0 \tag{2}
\end{equation*}
$$

We compute

$$
\begin{align*}
\frac{d}{d \lambda} \Phi(\boldsymbol{x}+\lambda \boldsymbol{v}) & =\frac{1}{2}(\boldsymbol{x}+\lambda \boldsymbol{v})^{T} A \boldsymbol{v}+\frac{1}{2} \boldsymbol{v}^{T} A(\boldsymbol{x}+\lambda \boldsymbol{v})-\boldsymbol{v}^{T} \boldsymbol{b} \\
& =\boldsymbol{v}^{T}(A(\boldsymbol{x}+\lambda \boldsymbol{v})-\boldsymbol{b}) \tag{3}
\end{align*}
$$

Setting $\lambda=0$, we see that we must require

$$
\begin{equation*}
\boldsymbol{v}^{T}(A \boldsymbol{x}-\boldsymbol{b})=0 \tag{4}
\end{equation*}
$$

Since \boldsymbol{v} is arbitrary, this implies that $A \boldsymbol{x}=\boldsymbol{b}$.
Vice versa, assume that $A \boldsymbol{x}=\boldsymbol{b}$. Then, for any $\boldsymbol{y} \in \mathbb{R}^{n}$,

$$
\begin{align*}
\Phi(\boldsymbol{y})-\Phi(\boldsymbol{x}) & =\frac{1}{2} \boldsymbol{y}^{T} A \boldsymbol{y}-\boldsymbol{y}^{T} \boldsymbol{b}-\frac{1}{2} \boldsymbol{x}^{T} A \boldsymbol{x}+\boldsymbol{x}^{T} \boldsymbol{b} \\
& =\frac{1}{2} \boldsymbol{y}^{T} A \boldsymbol{y}-\boldsymbol{y}^{T} A \boldsymbol{x}-\frac{1}{2} \boldsymbol{x}^{T} A \boldsymbol{x}+\boldsymbol{x}^{T} A \boldsymbol{x} \\
& =\frac{1}{2}(\boldsymbol{y}-\boldsymbol{x})^{T} A(\boldsymbol{y}-\boldsymbol{x}) \\
& \geq 0 \tag{5}
\end{align*}
$$

with equality if and only if $\boldsymbol{x}=\boldsymbol{y}$ since A is positive definite. We conclude that \boldsymbol{x} is the unique minimizer of Φ.

2 The Gradient Method

The algorithm works works as follows:

- Choose a descent direction \boldsymbol{d}_{k};
- Walk in the descent direction until you reach a minimum along the line;
- Repeat.

There are many ways of choosing descent directions. The simplest is to take the direction of steepest descent,

$$
\begin{equation*}
\boldsymbol{d}_{k}=-\nabla \Phi\left(\boldsymbol{x}_{k}\right)=\boldsymbol{b}-A \boldsymbol{x}_{k}=\boldsymbol{r}_{k} \tag{6}
\end{equation*}
$$

Given \boldsymbol{x}_{k}, compute the next iterate via

$$
\begin{equation*}
\boldsymbol{x}_{k+1}=\boldsymbol{x}_{k}+\alpha_{k} \boldsymbol{d}_{k} \tag{7}
\end{equation*}
$$

where α_{k} is chosen such that

$$
\begin{equation*}
\frac{d}{d \alpha_{k}} \Phi\left(\boldsymbol{x}_{k}+\alpha_{k} \boldsymbol{d}_{k}\right)=0 . \tag{8}
\end{equation*}
$$

Following the computation leading up to (3), we find that

$$
\begin{equation*}
0=\boldsymbol{d}_{k}^{T}\left(A\left(\boldsymbol{x}_{k}+\alpha_{k} \boldsymbol{d}_{k}\right)-\boldsymbol{b}\right), \tag{9}
\end{equation*}
$$

and therefore

$$
\begin{equation*}
\alpha_{k}=\frac{\boldsymbol{d}_{k}^{T} \boldsymbol{r}_{k}}{\boldsymbol{d}_{k}^{T} A \boldsymbol{d}_{k}} . \tag{10}
\end{equation*}
$$

In summary, one iteration of the gradient method consists of the steps

$$
\begin{align*}
\boldsymbol{r}_{k} & =\boldsymbol{b}-A \boldsymbol{x}_{k}, \tag{11}\\
\alpha_{k} & =\frac{\boldsymbol{r}_{k}^{T} \boldsymbol{r}_{k}}{\boldsymbol{r}_{k}^{T} A \boldsymbol{r}_{k}}, \tag{12}\\
\boldsymbol{x}_{k+1} & =\boldsymbol{x}_{k}+\alpha_{k} \boldsymbol{r}_{k} . \tag{13}
\end{align*}
$$

3 The Conjugate Gradient Method

The conjugate gradient method is based on the concept of optimality with respect to a set of search directions. Once the algorithm has reached optimality in some direction, we allow only changes that are in a certain sense orthogonal, thereby preserving optimality under iteration.

Specifically, we say that a point $\boldsymbol{x} \in \mathbb{R}^{n}$ is optimal with respect to a subspace $V \subset \mathbb{R}^{n}$ if Φ has a minimum at \boldsymbol{x} along each line passing through \boldsymbol{x} in a direction $\boldsymbol{v} \in V$.

Repeating the calculation that lead up to (4), we find that \boldsymbol{x} is optimal with respect to V if

$$
\begin{equation*}
\boldsymbol{r}^{T} \boldsymbol{v}=0 \quad \text { for all } \boldsymbol{v} \in V \tag{14}
\end{equation*}
$$

where $\boldsymbol{r}=\boldsymbol{b}-A \boldsymbol{x}$ is the corresponding residual.
Now assume that \boldsymbol{x}_{k} is optimal with respect to some subspace V_{k}. We would like to find a condition on a new descent direction \boldsymbol{d}_{k} so that the next iterate under

$$
\begin{equation*}
\boldsymbol{x}_{k+1}=\boldsymbol{x}_{k}+\alpha_{k} \boldsymbol{d}_{k} \tag{15}
\end{equation*}
$$

is optimal not only with respect to the new descent direction \boldsymbol{d}_{k}, as in the gradient method, but also with respect to all old descent directions V_{k}. Optimality with respect to the new direction implies, as for the gradient method,

$$
\begin{equation*}
\alpha_{k}=\frac{\boldsymbol{d}_{k}^{T} \boldsymbol{r}_{k}}{\boldsymbol{d}_{k}^{T} A \boldsymbol{d}_{k}} \tag{16}
\end{equation*}
$$

To get optimality conditions with respect to V_{k}, we multiply (15) by $-A$ from the left and add \boldsymbol{b}, so that

$$
\begin{equation*}
\boldsymbol{r}_{k+1}=\boldsymbol{r}_{k}-\alpha_{k} A \boldsymbol{d}_{k} \tag{17}
\end{equation*}
$$

Optimality with respect to V_{k} for \boldsymbol{x}_{k+1} and \boldsymbol{x}_{k} means that

$$
\begin{equation*}
\boldsymbol{r}_{k+1}^{T} \boldsymbol{v}=\boldsymbol{r}_{k}^{T} \boldsymbol{v}=0 \quad \text { for all } \boldsymbol{v} \in V_{k}, \tag{18}
\end{equation*}
$$

and therefore

$$
\begin{equation*}
\boldsymbol{v}^{T} A \boldsymbol{d}_{k}=0 \quad \text { for all } \boldsymbol{v} \in V_{k} . \tag{19}
\end{equation*}
$$

In other words, \boldsymbol{d}_{k} must be A-orthogonal to all directions in V_{k}.
The conjugate gradient method now works as follows. The first descent direction is chosen as for the gradient method, namely $\boldsymbol{d}_{1}=\boldsymbol{r}_{1}$. Each subsequent descent direction is the A-orthogonalization of \boldsymbol{r}_{k} with respect to the space of old descent directions

$$
\begin{equation*}
V_{k}=\operatorname{Span}\left\{\boldsymbol{d}_{1}, \ldots, \boldsymbol{d}_{k-1}\right\} . \tag{20}
\end{equation*}
$$

Following this construction, each new descent direction \boldsymbol{d}_{k} is ultimately a linear combination of all previous residuals $\boldsymbol{r}_{1}, \ldots, \boldsymbol{r}_{k}$. In particular, we see that

$$
\begin{equation*}
V_{k}=\operatorname{Span}\left\{\boldsymbol{r}_{1}, \ldots, \boldsymbol{r}_{k-1}\right\} . \tag{21}
\end{equation*}
$$

Thus, equation (17) gives a recursion relation for the spaces V_{k}, namely ${ }^{1}$

$$
\begin{equation*}
V_{k+1} \subset V_{k} \oplus A V_{k} \tag{22}
\end{equation*}
$$

[^0]We now analyze the A-orthogonality condition when stepping from \boldsymbol{x}_{k} to \boldsymbol{x}_{k+1} in detail. First, \boldsymbol{x}_{k} is already optimal with respect to V_{k} - this has been achieved in the previous step of the iteration-so that

$$
\begin{equation*}
\boldsymbol{r}_{k}^{T} \boldsymbol{v}=0 \quad \text { for all } \boldsymbol{v} \in V_{k} . \tag{23}
\end{equation*}
$$

Due to (22), this implies, in particular, that

$$
\begin{equation*}
\boldsymbol{r}_{k}^{T} A \boldsymbol{v}=0 \quad \text { for all } \boldsymbol{v} \in V_{k-1}, \tag{24}
\end{equation*}
$$

which is to say that

$$
\begin{equation*}
\boldsymbol{r}_{k}^{T} A \boldsymbol{d}_{j}=0 \quad \text { for all } j=1, \ldots, k-2 \tag{25}
\end{equation*}
$$

In other words, \boldsymbol{r}_{k} is already A-orthogonal to all but the $(k-1)$-st previous descent direction. This leads to a tremendous simplification of the orthogonalization step; the Gram-Schmidt-procedure needs only one projection, so that

$$
\begin{equation*}
\boldsymbol{d}_{k}=\boldsymbol{r}_{k}-\frac{\boldsymbol{r}_{k}^{T} A \boldsymbol{d}_{k-1}}{\boldsymbol{d}_{k-1}^{T} A \boldsymbol{d}_{k-1}} \boldsymbol{d}_{k-1} \tag{26}
\end{equation*}
$$

for $k \geq 2$.
We summarize the conjugate gradient method:

$$
\begin{align*}
\boldsymbol{r}_{k} & =\boldsymbol{b}-A \boldsymbol{x}_{k}, \tag{27}\\
\boldsymbol{d}_{k} & = \begin{cases}\boldsymbol{r}_{1} & \text { for } k=1 \\
\boldsymbol{r}_{k}-\frac{\boldsymbol{r}_{k}^{T} A \boldsymbol{d}_{k-1}}{\boldsymbol{d}_{k-1}^{T} A \boldsymbol{d}_{k-1}} \boldsymbol{d}_{k-1} & \text { for } k \geq 2,\end{cases} \tag{28}\\
\alpha_{k} & =\frac{\boldsymbol{d}_{k}^{T} \boldsymbol{r}_{k}}{\boldsymbol{d}_{k}^{T} A \boldsymbol{d}_{k}}, \tag{29}\\
\boldsymbol{x}_{k+1} & =\boldsymbol{x}_{k}+\alpha_{k} \boldsymbol{d}_{k} . \tag{30}
\end{align*}
$$

In exact arithmetic, one can show that either the dimension of V_{k} increases by one each iteration, or the exact solution is reached. This implies that the search space is exhausted after at most n iteration and the algorithm must terminate with the exact answer.

[^0]: ${ }^{1}$ In fact, it is easy to see that equality holds unless the algorithm terminates with the exact solution, and that

 $$
 \begin{aligned}
 V_{k+1} & =\operatorname{Span}\left\{\boldsymbol{r}_{1}, \ldots, \boldsymbol{r}_{k-1}, A \boldsymbol{d}_{k-1}\right\} \\
 & =\operatorname{Span}\left\{A^{0} \boldsymbol{r}_{1}, A^{1} \boldsymbol{r}_{1}, \ldots, A^{k-1} \boldsymbol{r}_{1}\right\} \\
 & =\operatorname{Span}\left\{A^{0} \boldsymbol{d}_{1}, A^{1} \boldsymbol{d}_{1}, \ldots, A^{k-1} \boldsymbol{d}_{1}\right\} .
 \end{aligned}
 $$

