Numerical Methods I

Midterm Exam

October 17, 2003

1. In the following transcript of an Octave session, all output has been deleted.
```
octave:1> a=1e308; b=1.05e308; c=-1.5e308;
octave:2> a+(b+c)
ans = ...................
octave:3> (a+b)+c
ans = ..................
octave:4> a/((1+a)-a)
ans = ..................
octave:5> x=1e-15;
octave:6> 1-cos(x)
ans = ..................
octave:7> sin(x)^2/(1+\operatorname{cos}(x))
ans = ..................
```

Identify which of the following answers belongs to each of the dotted lines.
(a) ans $=0$
(b) ans = Inf
(c) ans $=5.0000 \mathrm{e}-31$
(d) ans $=5.5000 \mathrm{e}+307$
(e) warning: division by zero ans = Inf
2. Suppose that a function has a zero in the interval $[0,1]$. Show that the bisection method is guaranteed to approximate the zero within a specified tolerance ε after

$$
\begin{equation*}
k \geq \frac{\ln 1 / \varepsilon}{\ln 2}-1 \tag{10}
\end{equation*}
$$

iterations.
3. Consider the matrix

$$
A=\left(\begin{array}{ll}
1 & \varepsilon \\
\varepsilon & 1
\end{array}\right)
$$

(a) Compute the condition number of A in a matrix norm of your choice. What happens if ε is close to 1 ?
(b) Show that the Jacobi method for solving $A \boldsymbol{x}=\boldsymbol{b}$ converges when $|\varepsilon|<1$.
(c) Show that the Gauss-Seidel method for solving $A \boldsymbol{x}=\boldsymbol{b}$ converges when $|\varepsilon|<1$. Which method converges faster?
Hint: Recall that the Gauss-Seidel method is based on the splitting $A=P+$ $(A-P)$ where P contains the right upper triangular entries of A. So

$$
P=\left(\begin{array}{ll}
1 & \varepsilon \tag{10+10+10}\\
0 & 1
\end{array}\right) \quad \text { and } \quad P^{-1}=\left(\begin{array}{cc}
1 & -\varepsilon \\
0 & 1
\end{array}\right) .
$$

4. Compute the $L U$ decomposition of the matrix

$$
A=\left(\begin{array}{lll}
1 & 1 & 0 \tag{10}\\
1 & 0 & 1 \\
0 & 1 & 1
\end{array}\right)
$$

5. Consider the sequence

$$
\begin{gathered}
I_{0}=1-e^{-1} \\
I_{n}=1-n I_{n-1}
\end{gathered}
$$

(a) What is the absolute condition number of computing I_{n} in terms of I_{n-1} ?

What is the absolute condition number of recursively computing I_{n} in terms of I_{0} ?
(b) Is this recursion a good method to compute I_{n} ? Explain!

Hint: $I_{n} \rightarrow 0$ as $n \rightarrow \infty$; see below.
(c) Extra credit: Show that $I_{n} \rightarrow 0$ as $n \rightarrow \infty$.

Hint: Show that

$$
I_{n}=\int_{0}^{1}(1-x)^{n} e^{-x} d x
$$

$$
(10+10+10)
$$

6. The following root finding method is a modification of the bisection method. It is called regula falsi.

$$
\begin{equation*}
x_{k+1}=x_{0}-\frac{x_{k}-x_{0}}{f\left(x_{k}\right)-f\left(x_{0}\right)} f\left(x_{0}\right) . \tag{*}
\end{equation*}
$$

(a) Show that the regula falsi is consistent.
(Recall that a method is consistent if every fixed point ξ of this iteration solves the equation $f(\xi)=0$.)
(b) Give an argument using Taylor expansion that the regula falsi is convergent with order 1.
(c) Extra credit: The regula falsi is applied in the following way. Choose two starting values x_{0} and x_{1} so that $f\left(x_{0}\right) \cdot f\left(x_{1}\right)<0$. Compute the sequence of x_{k} via $\left(^{*}\right)$. If $f\left(x_{0}\right) \cdot f\left(x_{k+1}\right)>0$, re-initialize by setting $x_{0}:=x_{k}$.
Show that if f is continuous, the sequence x_{k} will always converge to a root of f. Hint: Notice that x_{k+1} is the zero of the line joining the points $\left(x_{0}, f\left(x_{0}\right)\right)$ and $\left(x_{k}, f\left(x_{k}\right)\right)$. Then note that the sequence of intervals that bracket the root has monotonic bounds.

$$
(10+10+10)
$$

