Numerical Methods I

Problem Set 3

due September 29, 2003

Recall that if $\|\boldsymbol{x}\|_{p}$ denotes the p-norm of a vector $\boldsymbol{x} \in \mathbb{R}^{n}$, then the associated norm for a matrix $A \in \mathbb{R}^{n \times n}$ is defined

$$
\|A\|_{p}=\max _{\boldsymbol{x} \neq 0} \frac{\|A \boldsymbol{x}\|_{p}}{\|\boldsymbol{x}\|_{p}}
$$

1. (From SM.) Suppose that for a matrix $A \in \mathbb{R}^{n \times n}$,

$$
\begin{equation*}
\sum_{i=1}^{n}\left|a_{i j}\right| \leq C \tag{1}
\end{equation*}
$$

for $j=1, \ldots, n$.
(a) Show that, for any vector $\boldsymbol{x} \in \mathbb{R}^{n}$,

$$
\begin{equation*}
\|A \boldsymbol{x}\|_{1} \leq C\|\boldsymbol{x}\|_{1} \tag{2}
\end{equation*}
$$

(b) Find C subject to (1) and a nonzero vector \boldsymbol{x} so that (2) holds with equality.
(c) Conclude that

$$
\|A\|_{1}=\max _{j=1, \ldots, n} \sum_{i=1}^{n}\left|a_{i j}\right|
$$

2. (a) Show that, for $A \in \mathbb{R}^{n \times n}$,

$$
\|A\|_{2}=\sqrt{\lambda_{\max }},
$$

where $\lambda_{\max }$ is the largest eigenvalue of $A^{T} A$.
Hint: Recall that for any $\boldsymbol{x} \in \mathbb{R}^{n}$, you can write $\boldsymbol{x}^{T} \boldsymbol{x}=\|\boldsymbol{x}\|_{2}$. The eigenvalues of the symmetric matrix $A^{T} A$ are real and nonnegative (why?), and its eigenvectors can be chosen to form an orthonormal basis.
(b) Conclude that the condition number of an orthogonal matrix is 1 .
3. (From SM.) Assume that a nonsingular matrix $A \in \mathbb{R}^{n \times n}$ has an $L U$ factorization. Show that A can also be factored in the form $A=L D R$ where L is unit lower triangular, D is diagonal, and R is unit upper triangular. Use this result to express the $L U$ factoriztion of A^{T} in terms of the $L U$ factorization of A.
4. The $n \times n$ Vandermonde Matrix is defined as

$$
V=\left(\begin{array}{cccccc}
1 & 2 & 4 & 8 & \cdots & 2^{n-1} \\
1 & 3 & 9 & 27 & \cdots & 3^{n-1} \\
1 & 4 & 16 & 64 & \cdots & 4^{n-1} \\
\vdots & \vdots & \vdots & \vdots & & \vdots \\
1 & n+1 & (n+1)^{2} & (n+1)^{3} & \cdots & (n+1)^{n-1}
\end{array}\right) .
$$

Let $\boldsymbol{b} \in \mathbb{R}^{n}$ be the vector containing the sum of each row of V. Find a formula for the components of \boldsymbol{b}. What is the solution of the system of linear equations $V \boldsymbol{x}=\boldsymbol{b}$?
5. Project: Write an Octave function vandermonde (n) that generates the $n \times n$ Vandermonde Matrix. Compute its condition number with respect to the 2-norm for different values of n. (You may use the built-in Octave function cond.)
6. Project: Write an Octave function that computes the $L U$ decomposition of a matrix without pivoting. Test your code by solving $V \boldsymbol{x}=\boldsymbol{b}$ from Question 4 for several values of n.

