Numerical Methods I

Problem Set 6

due in class, October 29, 2003

1. It can be shown that the Conjugate Gradient (CG) method in the absence of rounding errors terminates after at most n steps, yielding the exact solution. Compare the number of operations for solving a system of linear equations via $L U$ decomposition with the number of operations for n iterations of CG.
Remark: Since A must be symmetric and positive definite for CG to be applicable, it is actually possible to half the number of operations required for the $L U$ decomposition by using the so-called Cholesky decomposition. However, this does not change the overall picture. For background information, see SM, pp. 90-93.
2. Project: Modify your Octave code from Homework 5 to use the Conjugate Gradient rather than the simple Gradient method. How do the two methods compare for the given test problem?
3. (a) Compute the Lagrange polynomial which interpolates a function f at three distinct nodes x_{0}, x_{1}, and x_{2}.
(b) Use the result from part (a) to derive approximations for $f^{\prime}\left(x_{1}\right)$ and $f^{\prime \prime}\left(x_{1}\right)$.
(c) Simplify the formulas from (b) for the case of equidistant nodes.
4. (From SM.) Given a set of points

$$
\left(x_{0}, y_{0}\right),\left(x_{1}, y_{1}\right), \ldots,\left(x_{n+1}, y_{n+1}\right)
$$

with distinct x_{1}, \ldots, x_{n+1}, let q be the Lagrange polynomial of degree n interpolating the points with index $i=0, \ldots, n$, and let r be the Lagrange polynomial of degree n interpolating the points with index $i=1, \ldots, n+1$. Show that the Lagrange polynomial of degree $n+1$ interpolating all $n+2$ points is given by

$$
p(x)=\frac{\left(x-x_{0}\right) r(x)-\left(x-x_{n+1}\right) q(x)}{x_{n+1}-x_{0}} .
$$

5. Project: (Runge's example.) Apply Lagrange interpolation with n equidistant interpolation points on the interval $[-5,5]$ to the function

$$
f(x)=\frac{1}{1+x^{2}} .
$$

Plot f and the Lagrange polynomial p_{n} for different values of n. How does the error behave as n increases?

