Numerical Methods I

Problem Set 9

due in class, November 26, 2003

1. The Chebychev polynomial of degree n is given by

$$T_n(x) = \cos(n \arccos x)$$
.

(a) Show that the extrema of T_n are located at

$$x_k = \cos\frac{k\pi}{n}$$

for k = 0, ..., n, and that the zeros of T_n are located at

$$x_k = \cos\frac{(1+2k)\pi}{2n}$$

for k = 0, ..., n - 1.

(b) Show that T_n and T_m are orthogonal with respect to the inner product

$$\langle f, g \rangle = \int_{-1}^{1} \frac{f(x) g(x)}{\sqrt{1 - x^2}} dx$$

if and only if $m \neq n$.

Hint: Use trigonometric substitution, then note that

$$2\cos\alpha\cos\beta = \cos(\alpha+\beta) + \cos(\alpha-\beta).$$

2. Solve the logistic differential equation

$$\dot{y} = y - y^2,$$

$$y(0) = y_0.$$

3. Compute the matrix exponential $\exp(A)$ for

(a)
$$A = \begin{pmatrix} 1 & 2 \\ 0 & 3 \end{pmatrix}$$
,

(b)
$$A = \begin{pmatrix} a & b \\ -b & a \end{pmatrix}$$
.

4. Give an example that $\exp(A+B) \neq \exp(A) \exp(B)$.

5. **Project:** Solve the logistic equation from Question 2 on the interval [0, 1] by using the explicit Taylor methods of order 1 and 2. Generate a doubly logarithmic error plot to demonstrate the order of the methods.

1