Numerical Methods I

Lab Session 1

September 11, 2003

Consider the sequences

$$
\begin{array}{cc}
x_{0}=0, & x_{k+1}=\cos \left(x_{k}\right) \\
y_{0}=1, & y_{k+1}=1-\cos \left(y_{k}\right) \\
& z_{k}=\sum_{j=1}^{k} \frac{1}{j^{2}} \tag{3}
\end{array}
$$

1. What are the limits ξ, η, and ζ for each of the sequences? Use Octave to compute the first few members of each sequence. Which ones converge fast, which ones converge slowly?
2. By plotting k vs. $\log \left|\xi-x_{k}\right|$, etc., determine for each of the sequences whether it converges linearly, sublinearly, or superlinearly.
3. By performing a log-log plot of $\left|\eta-y_{k}\right|$ vs. $\left|\eta-y_{k+1}\right|$, demonstrate that the convergence of y_{n} is in fact quadratic.
