Numerical Methods I

Lab Session 3

September 25, 2003

Consider the example given in class:

$$A = \begin{pmatrix} \varepsilon & 1 \\ 1 & 1 \end{pmatrix}, \qquad \boldsymbol{b} = \begin{pmatrix} 1+\varepsilon \\ 2 \end{pmatrix},$$

where the exact solution to the linear system $A\boldsymbol{x} = \boldsymbol{b}$ is

$$oldsymbol{x} = egin{pmatrix} 1 \ 1 \end{pmatrix}$$
 .

1. Solve this equation using Octave via its LU decomposition for $\varepsilon = 10^{-k}$ for $k = 2, \ldots, 18$.

Hint: help logspace

2. Divide the first equation by ε . Does the accuracy improve?