Numerical Methods I

Lab Session 3

September 25, 2003

Consider the example given in class:

$$
A=\left(\begin{array}{ll}
\varepsilon & 1 \\
1 & 1
\end{array}\right), \quad \boldsymbol{b}=\binom{1+\varepsilon}{2}
$$

where the exact solution to the linear system $A \boldsymbol{x}=\boldsymbol{b}$ is

$$
\boldsymbol{x}=\binom{1}{1}
$$

1. Solve this equation using Octave via its $L U$ decomposition for $\varepsilon=10^{-k}$ for $k=$ $2, \ldots, 18$.
Hint: help logspace
2. Divide the first equation by ε. Does the accuracy improve?
