Numerical Methods I

Lab Session 4

October 9, 2003

1. For given n, e.g. $n=10$, construct the $n \times n$ matrix

$$
A=\left(\begin{array}{cccccccc}
2 & -1 & 0 & & \cdots & & 0 & -\beta \\
-1 & 2 & \ddots & \ddots & & & & 0 \\
0 & \ddots & \ddots & & & & & \\
& \ddots & & & & & & \vdots \\
\vdots & & & & & & \ddots & \\
& & & & & \ddots & \ddots & 0 \\
0 & & & & \ddots & \ddots & 2 & -1 \\
-\beta & 0 & & \cdots & & 0 & -1 & 2
\end{array}\right)
$$

and the vectors $\boldsymbol{b}, \boldsymbol{c} \in \mathbb{R}^{n}$ with

$$
\begin{gathered}
b_{j}=1 \\
c_{j}=\sin \frac{2 \pi j}{n}
\end{gathered}
$$

where $j=1, \ldots, n$.
2. Use your code from Homework 4 to solve $A \boldsymbol{x}=\boldsymbol{b}$ and $\boldsymbol{A x}=\boldsymbol{c}$ for $\beta=1 / 2$ and $\beta=1$ via $L U$ decomposition.
3. Use the Gauss-Seidel iterative scheme to solve both problems. Does the solution converge?
4. Can you explain why things go wrong when $\beta=1$? What can you do to get a sensible answer?

