Numerical Methods I

Lab Session 6

October 30, 2003

In trigonometric interpolation we use a truncated Fourier series to interpolate a periodic function f on the interval $[0,2 \pi]$. Let N be an even number of equidistant nodes $x_{j}=j h$ where $h=2 \pi / N$ and $j=0, \ldots, N-1$.

The trigonometric interpolant of f is the function

$$
\begin{equation*}
\tilde{f}(x)=\sum_{k=-N / 2}^{N / 2-1} c_{k} \mathrm{e}^{\mathrm{i} k x} \tag{1}
\end{equation*}
$$

To determine the coefficients c_{k}, we impose the interpolation condition $\tilde{f}\left(x_{j}\right)=f\left(x_{j}\right)$ for $j=0, \ldots, N-1$, i.e.

$$
\begin{equation*}
\sum_{k=-N / 2}^{N / 2-1} c_{k} \mathrm{e}^{\mathrm{i} k x_{j}}=f\left(x_{j}\right) \tag{2}
\end{equation*}
$$

We multiply this equation by $\mathrm{e}^{-\mathrm{i} m x_{j}}$ and sum over all j, so that

$$
\begin{equation*}
\sum_{j=0}^{N-1} \mathrm{e}^{-\mathrm{i} m x_{j}} \sum_{k=-N / 2}^{N / 2-1} c_{k} \mathrm{e}^{\mathrm{i} k x_{j}}=\sum_{j=0}^{N-1} \mathrm{e}^{-\mathrm{i} m x_{j}} f\left(x_{j}\right) \tag{3}
\end{equation*}
$$

Notice that

$$
\begin{align*}
\sum_{j=0}^{N-1} \mathrm{e}^{-\mathrm{i} m x_{j}} \sum_{k=-N / 2}^{N / 2-1} c_{k} \mathrm{e}^{\mathrm{i} k x_{j}} & =\sum_{k=-N / 2}^{N / 2-1} c_{k} \sum_{j=0}^{N-1} \mathrm{e}^{\mathrm{i}(k-m) x_{j}} \\
& =\sum_{k=-N / 2}^{N / 2-1} c_{k} \sum_{j=0}^{N-1} \mathrm{e}^{\mathrm{i}(k-m) h j} \\
& =\sum_{k=-N / 2}^{N / 2-1} c_{k} \cdot \begin{cases}N & \text { if } k=m \\
\frac{1-\left(\mathrm{e}^{\mathrm{i}(k-m) 2 \pi / n}\right)^{n}}{1-\mathrm{e}^{\mathrm{i}(k-m) 2 \pi / n}}=0 & \text { if } k \neq m\end{cases} \\
& =N c_{m} . \tag{4}
\end{align*}
$$

We therefore obtain that

$$
\begin{equation*}
c_{m}=\frac{1}{N} \sum_{j=0}^{N-1} \mathrm{e}^{-\mathrm{i} m x_{j}} f\left(x_{j}\right) . \tag{5}
\end{equation*}
$$

Remark: The normalization convention is arbitrary. Most FFT libraries, including Octave, have the factor $1 / N$ in the inverse transform (1) rather than in the forward transform (5). The convention above has the advantage that the discrete Fourier transform (5) can be seen as the Riemann sum approximation of the continuous Fourier transform. If both the forward and the inverse transform get a factor of $1 / \sqrt{N}$, the transform is unitary, which has certain theoretical advantages, but is tedious in many instances.

1. Write an Octave program to compute the coefficients c_{m} for $m=-\frac{N}{2}, \ldots, \frac{N}{2}-1$ for a given function f, e.g.

$$
f(x)=x(x-2 \pi) \mathrm{e}^{-x}
$$

2. This operation can be done very efficiently via the Fast Fourier Transform, available in Octave as the function fft. Compare your result with that produced by fft to find out how the coefficients c_{m} are laid out.
3. Write an Octave function tpolyval (c, x), which, in analogy with the built-in function polyval, evaluates the trigonometric interpolant \tilde{f} via equation (1). Use the coefficient layout as used by fft.
4. Plot f and \tilde{f} for the given example.
5. What happens when $N=10$ and you interpolate $f(x)=\sin (6 x)$?
