Numerical Methods I

Lab Session 9

November 27, 2003

Solve the following systems of differential equations, for example by using a fourth order explicit Runge-Kutta method,

$$
\begin{aligned}
\boldsymbol{k}_{1} & =\boldsymbol{f}\left(t_{n}, \boldsymbol{y}_{n}\right) \\
\boldsymbol{k}_{2} & =\boldsymbol{f}\left(t_{n}+\frac{1}{2} h, \boldsymbol{y}_{n}+\frac{1}{2} h \boldsymbol{k}_{1}\right) \\
\boldsymbol{k}_{3} & =\boldsymbol{f}\left(t_{n}+\frac{1}{2} h, \boldsymbol{y}_{n}+\frac{1}{2} h \boldsymbol{k}_{2}\right) \\
\boldsymbol{k}_{4} & =\boldsymbol{f}\left(t_{n+1}, \boldsymbol{y}_{n}+h \boldsymbol{k}_{3}\right) \\
\boldsymbol{y}_{n+1} & =y_{n}+\frac{1}{6} h\left(\boldsymbol{k}_{1}+2 \boldsymbol{k}_{2}+2 \boldsymbol{k}_{3}+\boldsymbol{k}_{4}\right),
\end{aligned}
$$

or any of the other methods from Homework 10.

1. The Rössler system,

$$
\begin{aligned}
\dot{x} & =-y-z \\
\dot{y} & =x+\frac{1}{5} y \\
\dot{z} & =\frac{1}{5}+x z-\mu z
\end{aligned}
$$

with any initial condition. Solve the system over a long interval of time and plot the trajectory. What happens if you increase μ from 2 to 6 ?
Hint: You can produce a parametric 3D plot as follows:

```
gset parametric
gsplot y'
```

2. The Brusselator equation,

$$
\begin{aligned}
& \dot{x}=1-(b+1) x+a x^{2} y, \\
& \dot{y}=b x-a x^{2} y .
\end{aligned}
$$

Again, pick your initial data as you like, and study the behavior as $a=1$ and b is increased from 1 to 3 .

