# Numerical Methods I - Problem Sheet 1 

Matúš Harvan, Marcel Oliver

September 24, 2003
5. (a) Consider the equation $x^{2}+p x+1=0$. We use the well known formula for roots of a quadratic equation

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2}
$$

so that

$$
\begin{align*}
& x_{1}=\frac{-p-\sqrt{p^{2}-4}}{2}  \tag{1}\\
& x_{2}=\frac{-p+\sqrt{p^{2}-4}}{2} \tag{2}
\end{align*}
$$

The claim is that $x_{1} \sim-p$ and $x_{2} \sim-1 / p$, where $x \sim y$ denotes that $x$ asyptotes $y$, i.e. that

$$
\lim _{p \rightarrow \infty} \frac{x(p)}{y(p)}=1
$$

This condition is easily checked for $x_{1}$ :

$$
\lim _{p \rightarrow \infty} \frac{x_{1}}{-p}=\lim _{p \rightarrow \infty} \frac{-p-\sqrt{p^{2}-4}}{-2 p}=\lim _{p \rightarrow \infty} \frac{1+\sqrt{1-4 / p^{2}}}{2}=1 .
$$

For $x_{2}$ we write

$$
\begin{align*}
x_{2} & =-\frac{p-\sqrt{p^{2}-4}}{2} \\
& =-\frac{p-\sqrt{p^{2}-4}}{2} \cdot \frac{p+\sqrt{p^{2}-4}}{p+\sqrt{p^{2}-4}} \\
& =-\frac{p^{2}-\left(p^{2}-4\right)}{2 p+2 \sqrt{p^{2}-4}} \\
& =-\frac{4}{2 p+2 \sqrt{p^{2}-4}} \\
& =-\frac{2}{p+\sqrt{p^{2}-4}} . \tag{3}
\end{align*}
$$

Therefore,

$$
\lim _{p \rightarrow \infty} \frac{x_{2}}{-1 / p}=\lim _{p \rightarrow \infty} \frac{2 p}{p+\sqrt{p^{2}-4}}=\lim _{p \rightarrow \infty} \frac{2}{1+\sqrt{1-4 / p^{2}}}=1 .
$$

(b) octave:1> format long; $\mathrm{p}=1 \mathrm{e} 10$;
octave:2> x1=(-p+sqrt ((p^2)-4))/2
$\mathrm{x} 1=0$
octave:3> x2=(-p-sqrt $\left.\left(\left(p^{\wedge} 2\right)-4\right)\right) / 2$
$\mathrm{x} 2=-10000000000$
octave:4> x2better=(02/(p+sqrt(p^2-4)))
x2better $=1.00000000000000 \mathrm{e}-10$
x1 and x2 are calculated using the standard formula, equation (2). However, the result for $x_{2}$ has an extremely large relative error.
(c) The stable way of computing $x_{2}$ is to use equation (3). In the above transcript it is denoted as x2better and has negligible relative error.
6. (a) The algorithm is in file $\mathrm{p} 6 . \mathrm{m}^{1}$. A copy of it follows:

```
start=2;
stop=40;
z=[1:stop];
z(2)=2;
err=[1:stop];
function out = iter(z,n)
            out=(2^(n-(1/2))) * sqrt( 1-sqrt(1- (4^(1-n)) * (z^2)) );
end
for n=start:stop-1
    z(n+1)=iter1(z(n),n);
endfor
ideal=ones(1,stop).*pi;
err=abs(ideal.-z);
n=1:stop;
gset term postscript
gset output "p6_fig1.ps"
semilogy(n(start:stop),err(start:stop))
gset term x11
```

(b) The recursive formula contains $\sqrt{1-\sqrt{1-4^{1-n} \cdot \pi^{2}}}=\sqrt{1-\sqrt{1-2^{2-2 n} \cdot \pi^{2}}}$. The especially bad part here is the $1-4^{1-n} \cdot \pi^{2}$. For $n=17$ this gets $1-4^{-16} \pi=$ $1-2^{-32} \pi$, so that we subtract a very small number from 1 . Although this is not yet smaller than $\varepsilon_{M}$, it already produces an error, as subtraction has rather higher relative error. This error is then propagated and further amplified as the formula is calculated (square roots, other subtractions, ...). At a certain point the $4^{1-n} \pi$ gets smaller than $\varepsilon_{M}$, so we get $2^{n-\frac{1}{2}} \sqrt{1-\sqrt{1-0}}=0$ and there is no point in continuing the calculations further.

[^0]

Figure 1: Output of pt.m: Error vs. $n$

Another problem is that this is a recursive formula and even small errors at earlier steps are carried on to further steps and get amplified.
(c) The idea behind the formula is to take a unit circle and divide it into a finite number of triangles $\left(2^{n}\right)$. Then areas of those triangles are added together. Their total area approximates the area of the unit circle, which is $\pi$. The more triangles the unit circle is divided into, the more accurate the approximation is.


The first iteration is for $n=2$ e.g. drawing four triangles (which together form a square) into the unit circle. This square contains four triangles and has side of length $\sqrt{1^{2}+1^{2}}=\sqrt{2}$ and area of 2 . This is the starting point of out sequence.

$n=3$ : Each of the four triangles from $n=2$ gets divided into two triangles, so we get eight triangles. Two sides of the triangle are of length 1 (radius of the unit circle) and its height is $\frac{\sqrt{2}}{2} \frac{1}{2} \cdot 1 \cdot 8=2 \sqrt{2} \approx 2.828=z_{3}$.
(d) We can stabilize the algorithm by manipulating the formula:

$$
\begin{aligned}
z_{n+1} & =2^{n-\frac{1}{2}} \sqrt{1-\sqrt{1-4^{1-n} z_{n}^{2}}} \\
& =\frac{2^{n-\frac{1}{2}} \sqrt{1-\sqrt{1-4^{1-n} z_{n}^{2}}} \cdot \sqrt{1+\sqrt{1-4^{1-n} z_{n}^{2}}}}{\sqrt{1+\sqrt{1-4^{1-n} z_{n}^{2}}}} \\
& =2^{n-\frac{1}{2}} \sqrt{\frac{\sqrt{1-\left(1-4^{1-n} z_{n}^{2}\right)}}{1+\sqrt{1-4^{1-n} z_{n}^{2}}}} \\
& =2^{n-\frac{1}{2}} \sqrt{\frac{\sqrt{4^{1-n} z_{n}^{2}}}{1+\sqrt{1-4^{1-n} z_{n}^{2}}}} \\
& =\frac{2^{n-\frac{1}{2}} z_{n} \sqrt{4^{1-n}}}{\sqrt{1+\sqrt{1-4^{1-n} z_{n}^{2}}}} \\
& =\frac{2^{n-\frac{1}{2}} z_{n} 2^{1-n}}{\sqrt{1+\sqrt{1-4^{1-n} z_{n}^{2}}}} \\
& =\frac{\sqrt{2} z_{n}}{\sqrt{1+\sqrt{1-4^{1-n} z_{n}^{2}}}}
\end{aligned}
$$

This gives us a more stable algorithm, as can be seen in Figure 2.
The implementation of the algorithm is in file p6_2.m. A copy follows:

```
start=2;
stop=40;
z2=[1:stop];
z2(2)=2;
err2=[1:stop];
function out = iter2(z,n)
    out=sqrt(2)*z/sqrt(1+sqrt(1- (4^(1-n)) * (z^2) ));
end
for n=start:stop-1
    z2(n+1)=iter2(z2(n),n);
endfor
ideal=ones(1,stop).*pi;
err2=abs(ideal.-z2);
n=1:stop;
gset term postscript
gset output "p6_fig2.ps"
semilogy(n(start:stop),err2(start:stop))
gset term x11
```



Figure 2: errors vs. n for stable method


[^0]:    ${ }^{1} \mathrm{MO}$ : This code contains a few tricks that are specific to Octave. A more generic (and shorter)n Octave/Matlab code is in the file piseq.m

