Partial Differential Equations

Homework 3

due September 28, 2004

1. Prove that the Taylor series with integral remainder for a function $u \in C^{N}\left(\mathbb{R}^{n}\right)$ is

$$
u(x)=\sum_{|\alpha| \leq N-1} \frac{D^{\alpha} u\left(x_{0}\right)}{\alpha!}\left(x-x_{0}\right)^{\alpha}+R_{N}
$$

where

$$
R_{N}=N \sum_{|\alpha|=N} \frac{\left(x-x_{0}\right)^{\alpha}}{\alpha!} \int_{0}^{1}(1-t)^{N-1} D^{\alpha} u\left(x_{0}+t\left(x-x_{0}\right)\right) d t .
$$

Hint: Apply the one-dimensional Taylor formula with integral remainder to the function $f(s)=u\left(x_{0}+s\left(x-x_{0}\right)\right)$.
2. In class we have used Liouville's theorem to show that any bounded solution of the Poisson equation

$$
-\Delta u=f
$$

for $f \in C_{\mathrm{c}}^{2}\left(\mathbb{R}^{n}\right), n \geq 3$, is given by the solution formula

$$
u(x)=\int_{\mathbb{R}^{n}} \Phi(x-y) f(y) d y
$$

up to an arbitrary additive constant. (Evans, p. 30, Theorem 8.)
This statement does not hold in dimension $n=2$ since solutions are generically unbounded. Use Liouville's theorem to conjecture and prove the corresponding theorem for $n=2$.
3. Evans, p. 86 problem 5
4. Evans, p. 86 problem 6

