Partial Differential Equations

Homework 7

due November 11, 2004

In the following, \mathbb{T} denotes the 1-torus, i.e. $\mathbb{T} = \mathbb{R} \mod 2\pi$.

1. Let $f, g \in L^1(\mathbb{R}^n)$, i.e.

$$||f||_{L^1} \equiv \int_{\mathbb{R}^n} |f(x)| \, dx < \infty;$$

similarly for g. Show

- (a) $\lim_{y \to 0} \int_{\mathbb{R}^n} |f(x) f(x y)| \, dx = 0.$ *Hint:* Use mollifiers.
- (b) $||f * g||_{L^1} \le ||f||_{L^1} ||g||_{L^1}$
- (c) Suppose that, moreover, $g \in L^{\infty}(\mathbb{R}^n)$. Conclude that $f * g \in C(\mathbb{R}^n) \cap L^1(\mathbb{R}^n)$.

2. Use the Fourier transform to re-derive the fundamental solution of the heat equation.

3. (a) Show that, for every $u \in L^r(\mathbb{T})$ with $2 \leq r < \infty$,

$$||u||_{L^2} \le (2\pi)^{\frac{r-2}{2r}} ||u||_{L^r}.$$

Hint: Hölder inequality.

(b) Consider the Fisher–Kolmogorov equation on \mathbb{T} ,

$$u_t = u_{xx} + (1 - u) u^m$$

 $u(0) = u^{\text{in}},$

,

where m is an even positive integer. Use the result from (a) to sharpen the L^2 estimate derived in the lecture as follows: Show that

$$\limsup_{t\to\infty} \left\| u(t) \right\|_{L^2} \le C$$

where an explicit estimate for C can be given which, in particular, shows that C does not depend on the initial data u^{in} .

4. Show that if $u^{\text{in}} \ge 0$, the solution u(t) to the Fisher-Kolmogorov equation remains nonnegative for every $t \ge 0$. You may assume that u is as smooth as you need. *Hint:* This is similar to Homework 5, Question 2.

Grading: 6 points per question; there is a penalty of 1 point per day on late submissions!