Partial Differential Equations

Homework 8

due November 30, 2004

In the following, \mathbb{T} denotes the 1-torus, i.e. $\mathbb{T} = \mathbb{R} \mod 2\pi$.

1. (a) Show that, for every $u \in H^2(\mathbb{T})$,

$$||u||_{H^1}^2 \le ||u||_{L^2} ||u||_{H^2}$$
.

(b) Consider the Fisher–Kolmogorov equation on \mathbb{T} ,

$$u_t = u_{xx} + (1 - u) u^m,$$

 $u(0) = u^{\text{in}},$

where m is an even positive integer. Use the result from (a), as well as the first question of the previous homework set, to prove that that

$$\limsup_{t\to\infty}\|u(t)\|_{H^1}\leq C$$

where an explicit estimate for C can be given which, in particular, shows that C does not depend on the initial data u^{in} . You may assume that u is sufficiently differentiable so that all your formal manipulations are justified.

2. Prove the following version of the *Poincaré inequality*: For every $u \in H^1(\mathbb{T})$ which has zero mean, i.e. where

$$\int_{\mathbb{T}} u \, dx = 0 \,,$$

we have

$$\int_{\mathbb{T}} |u|^2 dx \le C \int_{\mathbb{T}} |u_x|^2 dx.$$

Find the best estimate for C.

3. (a) Consider a sequence $u_n \in L^2$ with $u_n \rightharpoonup u \in L^2$ weakly. Show that

$$||u|| \le \liminf_{n \to \infty} ||u_n||. \tag{*}$$

(Remark: This statement is actually true for any Banach space.)

- (b) Give an example where (*) holds with strict inequality.
- 4. Consider the inviscid Burger's equation on \mathbb{T} , i.e.

$$u_t + u \, u_x = 0 \, .$$

(a) Define an approximate solution u_n by applying the projector \mathbb{P}_n which projects onto modes up to wave number n to Burger's equation. Show that

$$||u_n(t)||_{L^2} = ||u_n(0)||_{L^2}.$$

(b) Conclude that $\{u_n\}$ has a subsequence that converges to some u weakly in $L^2(\mathbb{T})$, and that

$$||u(t)||_{L^2} \le ||u(0)||_{L^2}$$
.

Why do you have an inequality rather than equality?

(Note: you are not required to show that u solves Burger's equation in any sense. This would require a much more involved analysis.)

Grading: 6 points per question; there is a penalty of 1 point per day on late submissions!