Partial Differential Equations

Final Exam

December 9, 2004

1. Consider a modified Laplace equation,

$$
D \cdot(r D u(x))=0
$$

where $u: \mathbb{R}^{n} \rightarrow \mathbb{R}$ for $n \geq 2$, and $r=|x|$.
(a) Show that if u is a radial solution, i.e. $u(x)=v(r)$, then

$$
r v^{\prime \prime}+n v^{\prime}=0 .
$$

(b) Conclude that any radial solution with $u(r) \rightarrow 0$ as $r \rightarrow \infty$ is a multiple of

$$
\begin{equation*}
u(x)=\frac{1}{r^{n-1}} . \tag{5+5}
\end{equation*}
$$

2. Let $u(x, t) \geq 0$ denote a smooth temperature distribution within a homogeneous, heatconducting medium U. Hence, u satisfies the heat equation. It is known that the heat energy contained in U is proportional to

$$
E=\int_{U} u(x, t) d x
$$

(a) Show that the boundary condition $u(x, t)=0$ for $x \in \partial U$ corresponds to cooling, i.e. that the heat energy is non-increasing.
(b) What boundary condition would you use to describe a perfectly insulated medium?
(c) Extra credit: Prove that in case (a), provided U is bounded, the heat energy decreases exponentially.
3. (a) Let $U \in \mathbb{R}^{n}$ be open and simply connected, with sufficiently smooth boundary, and assume that the Poincaré inequality

$$
\|u\|_{L^{2}} \leq C\|D u\|_{L^{2}}
$$

holds for some constant C and for every $u \in H^{1}(U)$ with $u=0$ on ∂U.
Show that

$$
C \geq \frac{1}{\sqrt{|\lambda|}}
$$

where λ is an eigenvalue of the Laplacian corresponding to an eigenfunction that vanishes on ∂U.
(b) Show that there is no Poincaré inequality for $U=\mathbb{R}^{n}$.
4. Assume that $U \subset \mathbb{R}^{n}$ is open and connected. Show that if $u \in C^{2}(U)$ solves the Neumann problem

$$
\begin{align*}
-\Delta u=0 & \text { in } U, \\
\nu \cdot D u=0 & \text { on } \partial U, \tag{10}
\end{align*}
$$

then $u=$ const.
5. Note: The different parts of this question can be worked on independently. If you get stuck, move on.
(a) Let $u \in H^{1}([0,1])$ with

$$
u(0)=u(1)=0 .
$$

Prove that

$$
\left|u^{m}(x)\right| \leq m\left(\int_{0}^{1}|u|^{m} d x\right)^{\frac{1}{2}}\left(\int_{0}^{1}|u|^{m-2}\left|u_{x}\right|^{2} d x\right)^{\frac{1}{2}}
$$

Hint: Apply the Fundamental Theorem of Calculus to $v=u^{m}$; Cauchy-Schwarz inequality.
(b) Deduce from (a) that

$$
\int_{0}^{1}|u|^{2 m} d x \leq \frac{m}{2}\left(\int_{0}^{1}|u|^{m} d x\right)^{3}+\frac{m}{2} \int_{0}^{1}|u|^{m-2}\left|u_{x}\right|^{2} d x
$$

(c) Consider the partial differential equation

$$
\begin{aligned}
& u_{t}=u_{x x}+u^{m+1} \\
& u(0)=u(1)=0
\end{aligned}
$$

on $U=(0,1) \times(0, T)$, where $m \geq 2$ is an even integer.
Show that

$$
\frac{1}{m} \frac{d}{d t} \int_{0}^{1} u^{m} d x=-(m-1) \int_{0}^{1} u^{m-2} u_{x}^{2} d x+\int_{0}^{1} u^{2 m} d x
$$

(d) Combine (b) and (c) to find that

$$
\frac{d}{d t} \int_{0}^{1} u^{m} d x \leq \frac{m^{2}}{2}\left(\int_{0}^{1}|u|^{m} d x\right)^{3}
$$

Finally, conclude that if $u(0) \in L^{m}([0,1])$, then $u(t) \in L^{m}([0,1])$ for every $t \in$ $[0, T)$. Give a lower bound for the (potential) blow-up time T.

