Partial Differential Equations

Midterm Exam

October 28, 2004

1. Solve the partial differential equation

$$
\begin{gathered}
u_{t}+x u_{x}=0 \quad \text { in } \mathbb{R} \times(0, \infty), \\
u=g \quad \text { on } \mathbb{R} \times\{t=0\},
\end{gathered}
$$

where $u=u(x, t)$ and $g \in C^{1}(\mathbb{R})$.
Hint: Show that $z(s)=u(x(s), t+s)$ is constant if $x^{\prime}(s)=x(s)$.
2. For $U \subset \mathbb{R}^{n}$ open and (path-)connected, let $u \in C^{2}(U)$ be harmonic with $u \geq 0$.

Show that if $u(x)>0$ for some $x \in U$, then $u>0$ everywhere in U.
3. Recall that the solution to the heat equation

$$
\begin{gathered}
u_{t}-\Delta u=0 \quad \text { in } \mathbb{R}^{n} \times(0, \infty), \\
u=g \quad \text { on } \mathbb{R}^{n} \times\{t=0\}
\end{gathered}
$$

is given by

$$
u(x, t)=\int_{\mathbb{R}^{n}} \Phi(x-y, t) g(y) d y
$$

where, for $t>0$,

$$
\Phi(z, t)=\frac{1}{(4 \pi t)^{n / 2}} e^{-\frac{|z|^{2}}{4 t}}
$$

Assume that g is continuous and compactly supported. Show that there exists a $C>0$, depending only on the support of g, such that

$$
\begin{equation*}
|D u(x, t)| \leq \frac{C}{\sqrt{t}}\|g\|_{L^{\infty}} . \tag{10}
\end{equation*}
$$

4. Let $U \subset \mathbb{R}^{n}$ be open and bounded with C^{1} boundary. Assume that $u \in C_{1}^{2}(\bar{U} \times[0, \infty))$ solves the heat equation

$$
\begin{gathered}
u_{t}-\Delta u=0 \quad \text { in } U \times(0, \infty), \\
u=g \quad \text { on } U \times\{t=0\}, \\
u=0 \quad \text { on } \partial U \times(0, \infty),
\end{gathered}
$$

and define the "energy"

$$
\begin{equation*}
E(t)=\int_{U}|u(x, t)|^{2} d x \tag{10}
\end{equation*}
$$

Prove that $E(t) \leq E(0)$ for every $t \geq 0$.
5. Let $h \in C^{2}\left(\mathbb{R}^{3}\right)$ and set

$$
u(x, t)=f_{\partial B(x, t)} t h(y) d S(y)
$$

for $t>0$.
Show that
(a) $\lim _{t \rightarrow 0} u(x, t)=0$.
(b) $\lim _{t \rightarrow 0} u_{t}(x, t)=h(x)$.
(c) (Extra credit.) u solves the wave equation

$$
u_{t t}-\Delta u=0
$$

on $\mathbb{R}^{3} \times(0, \infty)$.

