# General Mathematics and Computational Science I 

## Exercise 2

September 8, 2005

1. (From Daepp/Gorkin, p. 114) Let $X$ be a nonempty set with an equivalence relation $\sim$ on it. Prove that for all $x, y \in X$,

$$
[x]=[y] \quad \text { if and only if } \quad x \sim y .
$$

2. Use induction to show that for $n \in \mathbb{N} \cup\{0\}$ and any (real) number $q \neq 1$,

$$
\sum_{k=0}^{n} q^{k}=\frac{1-q^{n+1}}{1-q}
$$

Remark: This sum is called a geometric progression.
3. A polygon is called convex if any straight line connecting two points of the polygon lies entirely within; see figure below.
Use induction to show that, for a convex $n$-gon (a polygon with $n$ vertices), the sum of the interior angles $S_{n}$ is

$$
S_{n}=180 \cdot(n-2)
$$



Convex polygon


