General Mathematics and Computational Science I

Exercise 4

September 15, 2005

1. Recall that we defined \mathbb{Z} to be the set of equivalence classes of tuples (a, b) with $a, b \in \mathbb{Z}_+$ with respect to the equivalence relation

 $(a,b) \sim (a',b')$ if and only if a+b'=a'+b.

Define an order relation by

$$(a,b) < (c,d)$$
 if and only if $a+d < b+c$. (*)

Show that if $(a, b) \sim (a', b')$ and (a, b) < (c, d), then (a', b') < (c, d).

Remark: This, together with the corresponding statement for the second operand, shows that \mathbb{Z} is well-ordered by relation (*).

- 2. Recall that addition on \mathbb{N} is the unique binary operation $F: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ with:
 - (A1) F(a, 1) = s(a) for all $a \in \mathbb{N}$,
 - (A2) F(a, s(b)) = s(F(a, b)) for all $a, b \in \mathbb{N}$,

where $s \colon \mathbb{N} \to \mathbb{N}$ is as in Peano's axioms.

Prove that F is commutative, i.e. that

$$F(a,b) = F(b,a)$$
 for all $a, b \in \mathbb{N}$.

Hint: Proceed in two steps. First, show that any $a \in \mathbb{N}$ commutes with 1 by proving that

 $M = \{a \in \mathbb{N} \colon F(a, 1) = F(1, a)\}$

is inductive.

- 3. Multiplication on \mathbb{N} can be defined, similar to addition, as the unique map $G \colon \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ with the following properties:
 - (M1) G(a, 1) = a for all $a \in \mathbb{N}$,
 - (M2) G(a, s(b)) = G(a, b) + a for all $a, b \in \mathbb{N}$.

Use this definition to prove that

 $2 \times 2 = 4$

where $2 \equiv s(1)$, $3 \equiv s(2)$, and $4 \equiv s(3)$.