General Mathematics and Computational Science I

Exercise 4

September 15, 2005

1. Recall that we defined \mathbb{Z} to be the set of equivalence classes of tuples (a, b) with $a, b \in \mathbb{Z}_{+}$with respect to the equivalence relation

$$
(a, b) \sim\left(a^{\prime}, b^{\prime}\right) \quad \text { if and only if } \quad a+b^{\prime}=a^{\prime}+b
$$

Define an order relation by

$$
\begin{equation*}
(a, b)<(c, d) \quad \text { if and only if } \quad a+d<b+c . \tag{*}
\end{equation*}
$$

Show that if $(a, b) \sim\left(a^{\prime}, b^{\prime}\right)$ and $(a, b)<(c, d)$, then $\left(a^{\prime}, b^{\prime}\right)<(c, d)$.
Remark: This, together with the corresponding statement for the second operand, shows that \mathbb{Z} is well-ordered by relation $\left(^{*}\right)$.
2. Recall that addition on \mathbb{N} is the unique binary operation $F: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$ with:
(A1) $F(a, 1)=s(a)$ for all $a \in \mathbb{N}$,
(A2) $F(a, s(b))=s(F(a, b))$ for all $a, b \in \mathbb{N}$,
where $s: \mathbb{N} \rightarrow \mathbb{N}$ is as in Peano's axioms.
Prove that F is commutative, i.e. that

$$
F(a, b)=F(b, a) \quad \text { for all } a, b \in \mathbb{N}
$$

Hint: Proceed in two steps. First, show that any $a \in \mathbb{N}$ commutes with 1 by proving that

$$
M=\{a \in \mathbb{N}: F(a, 1)=F(1, a)\}
$$

is inductive.
3. Multiplication on \mathbb{N} can be defined, similar to addition, as the unique map $G: \mathbb{N} \times \mathbb{N} \rightarrow$ \mathbb{N} with the following properties:
(M1) $G(a, 1)=a$ for all $a \in \mathbb{N}$, (M2) $G(a, s(b))=G(a, b)+a$ for all $a, b \in \mathbb{N}$.

Use this definition to prove that

$$
2 \times 2=4
$$

where $2 \equiv s(1), 3 \equiv s(2)$, and $4 \equiv s(3)$.

