General Mathematics and Computational Science I

Exercise 6

September 22, 2005

1. (Bernoulli inequality.) Use induction to prove that for every $x \in \mathbb{Q}$ with $x \geq-1$ and every $n \in \mathbb{N}$,

$$
(1+x)^{n} \geq 1+n x
$$

2. Recall the definition of addition and multiplication on the rationals. For $x=[a / b] \in \mathbb{Q}$ and $y=[c / d] \in \mathbb{Q}$, we define $x+y=[(a d+b c) / b d]$ and $x \cdot y=[a c / b d]$.
Show that multiplication is well-defined. I.e., show that the definition is independent of the choice of representative under the equivalence relation $(a, b) \sim\left(a^{\prime}, b^{\prime}\right)$ if $a \cdot b^{\prime}=a^{\prime} \cdot b$.
3. We say a field \mathbb{F} is ordered if there exists a relation $>$ which respects addition and multiplication in the following way. For any $x, y, z \in \mathbb{F}$,
(O1) if $x>y$, then $x+z>y+z$;
(O2) if $x>y$ and $z>0$, then $x z>y z$.
Recall from class that the set of rational numbers \mathbb{Q} can be ordered as follows. A rational number, i.e. an equivalence class $[a / b] \in \mathbb{Q}$, is positive if $a b>0$ and negative if $a b<0$. Then, for rationals $x=[a / b]$ and $y=[c / d]$, we define $x>y$ if $x-y>0$.
Show that this order relation satisfies (O1) and (O2).
