General Mathematics and Computational Science I

Exercise 8

October 6, 2005

1. (From Ivanov, p. 17.)
(a) Verify, by explicit computation, that the binomial coefficients

$$
\binom{n}{k}=\frac{n!}{k!(n-k)!}
$$

satisfy the recursion relation

$$
\begin{equation*}
\binom{n+1}{k}=\binom{n}{k}+\binom{n}{k-1} . \tag{*}
\end{equation*}
$$

(b) Derive this recursion relation from the interpretation of the binomial coefficients as the "number of k-element subsets of an n-element set".
2. (From Ivanov, p. 18.) Prove the binomial theorem directly by noting that the coefficients of the monomials $a^{k} b^{n-k}$ in the expansion of $(a+b)^{n}$ satisfy the recursion relation (*).
3. (From Ivanov, p. 19.) Prove that

$$
\binom{2 n}{k}=\sum_{l=0}^{k}\binom{n}{l}\binom{n}{k-l} .
$$

Hint: Use the function $P_{n}(x)$ from class, and the fact that

$$
\left((1+x)^{n}\right)^{2}=(1+x)^{2 n} .
$$

