General Mathematics and Computational Science I

Exercise 10

October 13, 2005

1. Show that

$$
\binom{n+1}{k+1}=\sum_{j=k}^{n}\binom{j}{k}
$$

for every $0 \leq k \leq n$.
2. Use the method of generating functions to find a closed form expression for the members of the generalized Fibonacci sequence

$$
\begin{gathered}
a_{0}=A, \\
a_{1}=B, \\
a_{n}=a_{n-1}+a_{n-2} .
\end{gathered}
$$

3. Use the method of generating functions to find a closed form expression for the members of the sequence

$$
\begin{gathered}
b_{0}=1 \\
b_{1}=\cos \theta \\
b_{n}=2 \cos \theta b_{n-1}-b_{n-2}
\end{gathered}
$$

where θ is an arbitrary real number.

