General Mathematics and Computational Science I

Final Exam

December 16, 2005

1. Let A be a set with a finite number of elements.
(a) Let $a \in A$. Are there more subsets of A that contain a or subsets of A that do not contain a ?
(b) If $X \subset A$, and X contains at least two elements, are there more subsets of A that contain X, or subsets of A that do not contain X ?

Explain your answer in each case.
2. Recall from class that the rational numbers \mathbb{Q} are defined as equivalence classes of tuples

$$
\{[a / b]: a, b \in \mathbb{Z}, b \neq 0\}
$$

with respect to the relation

$$
\begin{equation*}
[a / b] \sim[c / d] \quad \text { if } a d=b c \tag{*}
\end{equation*}
$$

Further, recall that \mathbb{Q} can be ordered as follows. A rational number $[a / b] \in \mathbb{Q}$, is positive if $a b>0$ and negative if $a b<0$. Then, for rationals $x=[a / b]$ and $y=[c / d]$, we define $x>y$ if $x-y>0$.
(a) Verify that $(*)$ defines an equivalence relation.
(b) Prove, using the above definition of ordering, that for any ordered pair $x, y \in \mathbb{Q}$ with $x<y$ there exists $z \in \mathbb{Q}$ with $x<z<y$.
3. Let a_{n} denote the sequence of Fibonacci numbers, i.e.

$$
\begin{gathered}
a_{n+1}=a_{n}+a_{n-1}, \\
a_{0}=a_{1}=1 .
\end{gathered}
$$

Prove, by induction, that

$$
\begin{equation*}
a_{0}+a_{2}+\cdots+a_{2 n}=a_{2 n+1} \tag{10}
\end{equation*}
$$

4. A combination lock has a five digit key; a digit can be any of the numbers $0, \ldots, 9$. What is the number of possible combinations if the digits must be in an increasing sequence?
5. Use the arithmetic-geometric mean inequality to find the radius of a cylinder with prescribed surface area and the largest possible volume.
Hints: The volume and the surface area of a cylinder of height h and radius r are given by $V=\pi h r^{2}$ and $S=2 \pi r^{2}+2 \pi r h$, respectively. Eliminate h.
6. (a) Solve the following linear programming problem using the simplex method. Maximize $z=4 x_{1}+x_{2}$ subject to

$$
\begin{gathered}
x_{1}+x_{2} \leq 4 \\
x_{2} \leq 3 \\
3 x_{1}+x_{2} \leq 9 \\
x_{i} \geq 0 \text { for } i=1,2 .
\end{gathered}
$$

(b) Sketch the feasible region, the level lines of the objective function, and the location of the optimal point found in (a).
7. Consider a Kac ring with N sites occupied by B black and W white balls. Each edge between neighboring sites carries a marker with probability μ. When the ring makes one turn, a ball just in front of a marker changes color.
Give an expression for the probability that all balls turn white after the first turn. What happens for N large?
8. If $W(B)$ denotes the number of possible ways that the sites of the Kac ring can be occupied by B black balls, define the entropy of the ring by

$$
S=\ln W(B)
$$

Show that when you double the number of sites, keeping the ratio of black balls constant, the entropy doubles in the limit of large N.
Hint: Use Stirling's formula,

$$
\begin{equation*}
n!\sim \sqrt{2 \pi n} n^{n} e^{-n} \tag{10}
\end{equation*}
$$

