General Mathematics and Computational Science I

Final Exam

December 16, 2005

- 1. Let A be a set with a finite number of elements.
 - (a) Let $a \in A$. Are there more subsets of A that contain a or subsets of A that do not contain a?
 - (b) If $X \subset A$, and X contains at least two elements, are there more subsets of A that contain X, or subsets of A that do not contain X?

Explain your answer in each case.

2. Recall from class that the rational numbers \mathbb{Q} are defined as equivalence classes of tuples

$$\{[a/b]: a, b \in \mathbb{Z}, b \neq 0\}$$

with respect to the relation

$$[a/b] \sim [c/d] \quad \text{if } ad = bc \,. \tag{(*)}$$

Further, recall that \mathbb{Q} can be ordered as follows. A rational number $[a/b] \in \mathbb{Q}$, is positive if ab > 0 and negative if ab < 0. Then, for rationals x = [a/b] and y = [c/d], we define x > y if x - y > 0.

- (a) Verify that (*) defines an equivalence relation.
- (b) Prove, using the above definition of ordering, that for any ordered pair $x, y \in \mathbb{Q}$ with x < y there exists $z \in \mathbb{Q}$ with x < z < y.

(5+5)

(5+5)

3. Let a_n denote the sequence of Fibonacci numbers, i.e.

$$a_{n+1} = a_n + a_{n-1},$$

 $a_0 = a_1 = 1.$

Prove, by induction, that

$$a_0 + a_2 + \dots + a_{2n} = a_{2n+1}$$
.

(10)

- 4. A combination lock has a five digit key; a digit can be any of the numbers 0,...,9. What is the number of possible combinations if the digits must be in an increasing sequence? (10)
- 5. Use the arithmetic-geometric mean inequality to find the radius of a cylinder with prescribed surface area and the largest possible volume.

Hints: The volume and the surface area of a cylinder of height h and radius r are given by $V = \pi h r^2$ and $S = 2\pi r^2 + 2\pi r h$, respectively. Eliminate h. (10)

6. (a) Solve the following linear programming problem using the simplex method. Maximize $z = 4 x_1 + x_2$ subject to

$$x_1 + x_2 \le 4$$
,
 $x_2 \le 3$,
 $3x_1 + x_2 \le 9$,
 $x_i \ge 0$ for $i = 1, 2$

(b) Sketch the feasible region, the level lines of the objective function, and the location of the optimal point found in (a).

(10+10)

(10)

7. Consider a Kac ring with N sites occupied by B black and W white balls. Each edge between neighboring sites carries a marker with probability μ . When the ring makes one turn, a ball just in front of a marker changes color.

Give an expression for the probability that all balls turn white after the first turn. What happens for N large? (10)

8. If W(B) denotes the number of possible ways that the sites of the Kac ring can be occupied by B black balls, define the entropy of the ring by

$$S = \ln W(B) \,.$$

Show that when you double the number of sites, keeping the ratio of black balls constant, the entropy doubles in the limit of large N.

Hint: Use Stirling's formula,

$$n! \sim \sqrt{2\pi n} \, n^n \, e^{-n} \, .$$