General Mathematics and Computational Science I

Midterm I

September 29, 2005

1. Let T_{n} denote the number of equally spaced points that fill an equilateral triangle where each side is built of n equally spaced points:

$$
\begin{array}{cccc}
T_{1}=1 & T_{2}=3 & T_{3}=6 & T_{4}=10 \tag{8}
\end{array}
$$

Find a general formula for T_{n} and prove that your formula is correct.
2. Show that $2^{n}>n^{2}$ for every natural number $n \geq 5$.
3. Are the following functions surjective? Are they injective? Prove or disprove!
(a) $f:\{1,2,3\} \rightarrow\{1,2,3\}$ where $f(1)=2, f(2)=3, f(3)=3$.
(b) Let X be a nonempty set, and $P(X)$ the set of all subsets of X, called the power set of X.
Let $f: P(X) \rightarrow P(X)$ be defined as $f(A)=X \backslash A$.
4. Consider a map $G: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$ with the following properties:
(M1) $G(a, 1)=a$ for all $a \in \mathbb{N}$,
(M2) $G(a, s(b))=G(a, b)+a$ for all $a, b \in \mathbb{N}$,
where $s: \mathbb{N} \rightarrow \mathbb{N}$ is as in Peano's axioms.
Prove that G is commutative, i.e.

$$
G(a, b)=G(b, a)
$$

for all $a, b \in \mathbb{N}$.
Hint: Consider the special case $b=1$ first.
5. Give an example of a relation on \mathbb{N} which is transitive, but is neither reflexive nor symmetric.
State explicitly why each of these properties holds respectively fails.
6. Show that $\mathbb{N} \cong \mathbb{Z}$.

