General Mathematics and Computational Science I

Midterm I

September 29, 2005

1. Let T_n denote the number of equally spaced points that fill an equilateral triangle where each side is built of n equally spaced points:

			\bigcirc
		\bigcirc	\circ \circ
	\bigcirc	0 0	\circ \circ \circ
\bigcirc	\circ \circ	\circ \circ \circ	\circ \circ \circ \circ
$T_1 = 1$	$T_2 = 3$	$T_{3} = 6$	$T_4 = 10$

Find a general formula for T_n and prove that your formula is correct. (8)

- 2. Show that $2^n > n^2$ for every natural number $n \ge 5$.
- 3. Are the following functions surjective? Are they injective? Prove or disprove!
 - (a) $f: \{1, 2, 3\} \to \{1, 2, 3\}$ where f(1) = 2, f(2) = 3, f(3) = 3.
 - (b) Let X be a nonempty set, and P(X) the set of all subsets of X, called the *power* set of X.
 Let f: P(X) → P(X) be defined as f(A) = X \ A.

(5+5)

(8)

- 4. Consider a map $G \colon \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ with the following properties:
 - (M1) G(a, 1) = a for all $a \in \mathbb{N}$,
 - (M2) G(a, s(b)) = G(a, b) + a for all $a, b \in \mathbb{N}$,

where $s \colon \mathbb{N} \to \mathbb{N}$ is as in Peano's axioms.

Prove that G is commutative, i.e.

$$G(a,b) = G(b,a)$$

for all $a, b \in \mathbb{N}$.

Hint: Consider the special case b = 1 first.

(8)

5.	Give an example of a relation on \mathbb{N} which is transitive, but is neither reflexive	nor
	symmetric.	
	State explicitly why each of these properties holds respectively fails.	(8)
6.	Show that $\mathbb{N} \cong \mathbb{Z}$.	(8)