General Mathematics and Computational Science I

Practice Midterm I – Not for Credit

September 22, 2005

- 1. (Re)do Exercise 2 Question 3.
- 2. Show that $2^n \leq n!$ for all natural numbers $n \geq 5$.
- 3. Are the following functions surjective? Are they injective? Prove or disprove!
 - (a) Define $f: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z} \times \mathbb{Z}$ by f(x, y) = (y, x).
 - (b) Let X be a set, and P(X) the set of all subsets of X, called the *power set* of X. Fix a proper subset $B \subset X$, and let $f: P(X) \to P(X)$ be defined as $f(A) = A \cap B$.
 - (c) Define $f: P(\mathbb{N}) \to \mathbb{N}$ by $f(A) = \min A$, the minimum element of the set A.
- 4. Consider a map $G \colon \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ with the following properties:
 - (M1) G(a, 1) = a for all $a \in \mathbb{N}$,
 - (M2) G(a, s(b)) = G(a, b) + a for all $a, b \in \mathbb{N}$,

where $s \colon \mathbb{N} \to \mathbb{N}$ is as in Peano's axioms.

Prove that if

$$G(a,c) = G(b,c)$$

for some $a, b, c \in \mathbb{N}$, then a = b.

- 5. For functions $p, q: \mathbb{Z} \to \mathbb{Z}$, define the relation $p \sim q$ if and only if p(0) = q(0). Is this an equivalence relation? Prove or disprove!
- 6. Let $I_n = \{k \in \mathbb{N} : k \leq n\}$. Show that

$$I_m \times I_n \cong I_{mn}$$
.