General Mathematics and Computational Science I

Practice Midterm I - Not for Credit

September 22, 2005

1. (Re)do Exercise 2 Question 3.
2. Show that $2^{n} \leq n$! for all natural numbers $n \geq 5$.
3. Are the following functions surjective? Are they injective? Prove or disprove!
(a) Define $f: \mathbb{Z} \times \mathbb{Z} \rightarrow \mathbb{Z} \times \mathbb{Z}$ by $f(x, y)=(y, x)$.
(b) Let X be a set, and $P(X)$ the set of all subsets of X, called the power set of X.

Fix a proper subset $B \subset X$, and let $f: P(X) \rightarrow P(X)$ be defined as $f(A)=A \cap B$.
(c) Define $f: P(\mathbb{N}) \rightarrow \mathbb{N}$ by $f(A)=\min A$, the minimum element of the set A.
4. Consider a map $G: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$ with the following properties:
(M1) $G(a, 1)=a$ for all $a \in \mathbb{N}$,
(M2) $G(a, s(b))=G(a, b)+a$ for all $a, b \in \mathbb{N}$,
where $s: \mathbb{N} \rightarrow \mathbb{N}$ is as in Peano's axioms.
Prove that if

$$
G(a, c)=G(b, c)
$$

for some $a, b, c \in \mathbb{N}$, then $a=b$.
5. For functions $p, q: \mathbb{Z} \rightarrow \mathbb{Z}$, define the relation $p \sim q$ if and only if $p(0)=q(0)$.

Is this an equivalence relation? Prove or disprove!
6. Let $I_{n}=\{k \in \mathbb{N}: k \leq n\}$. Show that

$$
I_{m} \times I_{n} \cong I_{m n}
$$

