Numerical Methods I

Final Exam

December 19, 2005

For N even, the discrete Fourier transform of an N-tuple of numbers u_{0}, \ldots, u_{N-1}, is defined

$$
\hat{u}_{k}=\frac{1}{N} \sum_{j=0}^{N-1} \mathrm{e}^{-\mathrm{i} k x_{j}} u_{j}
$$

with $x_{j}=j h$ and $h=2 \pi / N$. The inverse discrete Fourier transform is given by

$$
u_{j}=\sum_{k=-N / 2}^{N / 2-1} \mathrm{e}^{\mathrm{i} k x_{j}} \hat{u}_{k}
$$

1. Consider the following Octave program.
```
format long;
epsilon = 1e-14;
A = vandermonde (10); % vandermonde(n) gives the n x n Vandermonde matrix
b = sum (A,2);
[L,U,P] = lu(A);
y = L\(P*b);
x = U\y;
r = b-A*x;
[x r]
while norm(r)>epsilon
    v = L\(P*r);
    w = U\v;
    x = x + w;
    r = b-A*x;
        [x r]
end
(a) What does this code do? Explain.
```

(b) If you run the code in Octave, you'll find the following:

```
ans =
    0.999661641799626 0.000000000000000
    1.000619472137607 0.000000016163540
    0.999521918673179 -0.000000093248673
    1.000205001753909 -0.000000229105353
    0.999945946146878 -0.000000005587935
    1.000009127129884 -0.000000104308128
    0.999999009142851 -0.000000208616257
    1.000000066933674 -0.000000119209290
    0.999999997438762 0.000000000000000
    1.000000000042420 0.0000000000000000
ans =
    0.999992500612691 0.000000000000000
    1.000014060201136 0.000000000000000
    0.999988837483866 0.000000000000000
    1.000004942746758 0.000000000000000
    0.999998650834743 0.000000000000000
    1.000000235987559 0.000000000000000
    0.999999973495598 0.000000000000000
    1.000000001846354 0.000000000000000
    0.9999999999927497 0.000000000000000
    1.0000000000001225 0.000000000000000
```

What can you say about the condition of the problem? Is the residual a good error indicator?
(c) Will this code always terminate? Explain.

$$
(10+10+10)
$$

2. Use Newton's method for solving the quadratic equation $x^{2}=q$ for a given positive real number q.
(a) Show that, in this case, the fixed point iteration reads

$$
x_{k+1}=\frac{x_{k}}{2}+\frac{q}{2 x_{k}} .
$$

(b) Let x denote the exact solution. Show that

$$
x_{k+1}-x=\frac{\left(x_{k}-x\right)^{2}}{2 x_{k}} .
$$

(c) What can you say about the order of convergence?
3. Compute the location of the quadrature points for Gauss quadrature on the interval $[-1,1]$ with two quadrature points.
Hint: you may use the fact that Gauss quadrature integrates polynomials up to a certain degree exactly.
4. Note: The remaining questions are all connected, but can be worked on independently. In the following, we consider the cubic interpolating spline on N equidistant grid points $x_{j}=j h$ for $j=0, \ldots, N-1$.
Let y_{j} denote the given value of the spline on the grid nodes, and $y_{j}^{\prime \prime}$ the (unknown) value of the second derivative.
Show that the following system of linear equations is satisfied:

$$
\begin{equation*}
y_{j-1}^{\prime \prime}+4 y_{j}^{\prime \prime}+y_{j+1}^{\prime \prime}=\frac{6}{h^{2}}\left(y_{j-1}-2 y_{j}+y_{j+1}\right) . \tag{*}
\end{equation*}
$$

Hint: Use the notation from class: write

$$
s_{j}(x)=a_{j}\left(x-x_{j}\right)^{3}+b_{j}\left(x-x_{j}\right)^{2}+c_{j}\left(x-x_{j}\right)+d_{j}
$$

to denote the spline function on the j th interval. Show that $2 b_{j}=y_{j}^{\prime \prime}$ and $d_{j}=y_{j}$ and eliminate a_{j} and c_{j} by using the matching conditions at the interpolation nodes. (10)
5. Assume that the cubic spline from question 4 is defined on a periodic grid. In other words, interpolation node x_{0} is identified with x_{N}.
Explain why system $\left(^{*}\right)$ has the same number of equations as there are unkowns, i.e., why we do not need to impose additional conditions as in the case of non-periodic splines.
6. Let u_{j} with $j=0, \ldots, N-1$ be a given tuple of numbers on an N-periodic equidistant grid with grid spacing $h=2 \pi / N$. Let \hat{u}_{k} with $k=-N / 2, \ldots, N / 2-1$ denote its discrete Fourier transform. Further, let τ_{ℓ} denote translation by ℓ grid points, i.e.

$$
\left(\tau_{\ell} u\right)_{j}=u_{j+\ell}
$$

Show that

$$
\begin{equation*}
\left(\widehat{\tau_{\ell} u}\right)_{k}=\mathrm{e}^{\mathrm{i} h k \ell} \hat{u}_{k} . \tag{10}
\end{equation*}
$$

7. The linear system $\left(^{*}\right)$ for computing the periodic spline in question 4 can be solved by taking the discrete Fourier transform on both sides of the equality.
(a) Show that in the special case that the right hand side is non-zero on a single interpolation node only,

$$
y_{j-1}^{\prime \prime}+4 y_{j}^{\prime \prime}+y_{j+1}^{\prime \prime}=\delta_{0 j}
$$

the solution of the linear system is given by

$$
y_{j}^{\prime \prime}=\frac{1}{N} \sum_{k=-N / 2}^{N / 2-1} \frac{\mathrm{e}^{\mathrm{i} h k j}}{4+2 \cos (k h)}
$$

Note: You are required to use the discrete Fourier transform and inverse discrete Fourier transform. The given solution is only for your convenience - direct substitution into the linear system will not earn credit.
(b) Show that the result from part (a) implies that at the gridpoint $j=N / 2$,

$$
\left|y_{N / 2}^{\prime \prime}\right| \leq \text { const } \cdot \frac{1}{N} .
$$

Hint: First show that

$$
\begin{equation*}
y_{N / 2}^{\prime \prime}=\frac{1}{N} \sum_{k=1}^{N / 2} \frac{(-1)^{k}}{2+\cos (k h)} \tag{10+10}
\end{equation*}
$$

8. Write out the linear system $\left({ }^{*}\right)$ of question 4 in matrix form for the periodic case.

You now know three methods for numerically solving this system:
(a) Gaussian elimination (or $L U$-decomposition)
(b) Iterative methods
(c) The procedure outlined in question 7, implemented in terms of the FFT and IFFT Comment on the computational complexity and efficiency of each for this particular matrix.

