Numerical Methods I - Problem Set 10

Fall Semester 2005

Due December 7 in class!

1. The Chebychev polynomial of degree n is given by

$$
T_{n}(x)=\cos (n \arccos x) .
$$

(a) Show that the extrema of T_{n} are located at

$$
x_{k}=\cos \frac{k \pi}{n}
$$

for $k=0, \ldots, n$, and that the zeros of T_{n} are located at

$$
x_{k}=\cos \frac{(1+2 k) \pi}{2 n}
$$

for $k=0, \ldots, n-1$.
(b) Show that T_{n} and T_{m} are orthogonal with respect to the inner product

$$
\langle f, g\rangle=\int_{-1}^{1} \frac{f(x) g(x)}{\sqrt{1-x^{2}}} \mathrm{~d} x
$$

if and only if $m \neq n$.
Hint: Use trigonometric substitution, then note that

$$
2 \cos \alpha \cos \beta=\cos (\alpha+\beta)+\cos (\alpha-\beta)
$$

2. Solve the logistic differential equation

$$
\begin{gathered}
\dot{y}=y-y^{2}, \\
y(0)=y_{0} .
\end{gathered}
$$

3. Compute the matrix $\operatorname{exponential} \exp (A)$ for
(a) $A=\left(\begin{array}{ll}1 & 2 \\ 0 & 3\end{array}\right)$,
(b) $A=\left(\begin{array}{cc}a & b \\ -b & a\end{array}\right)$.
4. Give an example that $\exp (A+B) \neq \exp (A) \exp (B)$.
5. Project: Solve the logistic equation from Question 2 on the interval $[0,1]$ by using the explicit Taylor methods of order 1 and 2. Generate a doubly logarithmic error plot to demonstrate the order of the methods.
