
Numerical Methods I – Problem Sets 3 and 4

Fall Semester 2005

Due September 30 (Theory), October 7 (Projects)

Background reading: Süli and Mayers, Chapter 2; Quarteroni and Saleri, Chapter 5.
Please submit the theoretical homework directly to Stanislav Harizanov (e.g. clearly ad-
dressed to him via the mailbox in front of Research I, room 40.)

1. The following root finding method is a modification of the bisection method. It is
called regula falsi.

xk+1 = x0 −
xk − x0

f(xk)− f(x0)
f(x0) . (*)

(a) Show that the regula falsi is consistent.

(Recall that a method is consistent if every fixed point ξ of this iteration solves
the equation f(ξ) = 0.)

(b) Give an argument using Taylor expansion that the regula falsi is convergent with
order 1.

(c) The regula falsi is applied in the following way. Choose two starting values x0

and x1 so that f(x0) · f(x1) < 0. Compute the sequence of xk via (*). If f(x0) ·
f(xk+1) > 0, re-initialize by setting x0 := xk.

Show that if f is continuous, the sequence xk will always converge to a root of f .

Hint: Notice that xk+1 is the zero of the line joining the points (x0, f(x0)) and
(xk, f(xk)). Then note that the sequence of intervals that bracket the root has
monotonic bounds.

2. (From SM.) Recall that if ‖x‖p denotes the p-norm of a vector x ∈ Rn, then the
associated norm for a matrix A ∈ Rn×n is defined

‖A‖p = max
x6=0

‖Ax‖p

‖x‖p

.

Suppose that for a matrix A ∈ Rn×n,

n∑
i=1

|aij| ≤ C (1)

for j = 1, . . . , n.
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(a) Show that, for any vector x ∈ Rn,

‖Ax‖1 ≤ C ‖x‖1 . (2)

(b) Find C subject to (1) and a nonzero vector x so that (2) holds with equality.

(c) Conclude that

‖A‖1 = max
j=1,...,n

n∑
i=1

|aij| .

3. (a) Show that, for A ∈ Rn×n,

‖A‖2 =
√

λmax ,

where λmax is the largest eigenvalue of AT A.

Hint: Recall that for any x ∈ Rn, you can write xT x = ‖x‖2. The eigenvalues of
the symmetric matrix AT A are real and nonnegative (why?), and its eigenvectors
can be chosen to form an orthonormal basis.

(b) Conclude that the condition number of an orthogonal matrix is 1.

4. Let ρ(A) denote the spectral radius of a matrix A, i.e.

ρ(A) = max
i=1,...,m

|λi| ,

where λ1, . . . , λm are the (possibly complex) eigenvalues of A.

(a) Show that ρ(A) ≤ ‖A‖ for any matrix norm of A.

(b) Give an example of a nonzero matrix for which ρ(A) = 0.

5. (From SM.) Assume that a nonsingular matrix A ∈ Rn×n has an LU factorization.
Show that A can also be factored in the form A = LDR where L is unit lower triangular,
D is diagonal, and R is unit upper triangular. Use this result to express the LU
factoriztion of AT in terms of the LU factorization of A.

6. The n× n Vandermonde Matrix is defined as

V =


1 2 4 8 · · · 2n−1

1 3 9 27 · · · 3n−1

1 4 16 64 · · · 4n−1

...
...

...
...

...
1 n + 1 (n + 1)2 (n + 1)3 · · · (n + 1)n−1

 .

Let b ∈ Rn be the vector containing the sum of each row of V . Find a formula for the
components of b. What is the solution of the system of linear equations V x = b?
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7. Project: Write an Octave function vandermonde(n) that generates the n×n Vander-
monde Matrix. Compute its condition number with respect to the 2-norm for different
values of n. (You may use the built-in Octave function cond.)

8. Project: Write an Octave function that computes the LU decomposition of a matrix
without pivoting. Test your code by solving V x = b from Question 4 for several values
of n.

9. Project: Modify your program for the LU decomposition to include pivoting. I.e.,
let your program find P , L, and R so that for a given nonsingular matrix A ∈ Rn×n,
PA = LU . Use your program to solve last week’s Vandermonde test problem. Does
pivoting help?

10. Project: Use LU decomposition with and without pivoting to solve randomly gener-
ated linear equations. Print the 2-norm of the residual and the condition number of
the matrix for many test problems. Describe the effect of pivoting.

11. Project: Write an Octave code to perform a QR decomposition of an n × m matrix.
Then compute the least squares solution to Ax = b with

A =


0 1 1
1 0 1
0 0 1
0 1 1

 , b =


4
3
2
1

 .
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