General Mathematics and Computational Science I

Exercise 2

September 19, 2006

- 1. Check whether each of the following relations is an equivalence relation, i.e. check whether it is reflexive, symmetric, and transitive. If a property holds, prove that it does. If a property does not hold, give a counter example.
 - (a) On \mathbb{Z} , define $x \sim y$ if and only if x y is divisible by 3. Note: Any number $n \in \mathbb{Z}$ is divisible by 3 if there exists $k \in \mathbb{Z}$ such that $n = 3 \cdot k$.
 - (b) Let X be a nonempty set. Define, for any two subsets $A, B \subseteq X$, that $A \sim B$ if and only if $A \subseteq B$.
 - (c) On $\mathbb{Z} \times \mathbb{Z}$, define $(a, b) \sim (a', b')$ if and only if ab' = ba'.
- 2. Recall from class that we studied a binary operation $F \colon \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ with the following properties:
 - (A1) F(a,1) = s(a) for all $a \in \mathbb{N}$,
 - (A2) F(a, s(b)) = s(F(a, b)) for all $a, b \in \mathbb{N}$,

where $s : \mathbb{N} \to \mathbb{N}$ is as in Peano's axioms.

Prove that if

$$F(a,c) = F(b,c)$$

for some $a, b, c \in \mathbb{N}$, then a = b.