General Mathematics and Computational Science I

Exercise 3

September 21, 2006

1. Recall that we defined \mathbb{Z} to be the set of equivalence classes of tuples (a, b) with $a, b \in \mathbb{Z}_{+}$with respect to the equivalence relation

$$
(a, b) \sim\left(a^{\prime}, b^{\prime}\right) \quad \text { if and only if } \quad a+b^{\prime}=a^{\prime}+b
$$

Define an order relation by

$$
\begin{equation*}
(a, b)<(c, d) \quad \text { if and only if } \quad a+d<b+c . \tag{*}
\end{equation*}
$$

Show that if $(a, b) \sim\left(a^{\prime}, b^{\prime}\right)$ and $(a, b)<(c, d)$, then $\left(a^{\prime}, b^{\prime}\right)<(c, d)$.
Remark: This, together with the corresponding statement for the second operand, shows that \mathbb{Z} is well-ordered by relation $\left(^{*}\right)$.
2. Check if the following functions are injective, surjective or bijective.
(i) $f: \mathbb{N} \rightarrow \mathbb{N}$, given by $f(n)=n+1$.
(ii) $f: \mathbb{Z} \times \mathbb{Z} \rightarrow \mathbb{Z}$, given by $f(n, m)=\min \{m, n\}$.
(iii) $f: \mathbb{N} \rightarrow \mathbb{N}$ with $f(2 n)=2 n-1$ for all $n>0$ and $f(2 n+1)=2 n+2$ for all $n \geq 0$.
(If one of the properties fails, give a counter example. Otherwise give a short proof.)
3. Multiplication on \mathbb{N} can be defined, similar to addition, as the unique map $G: \mathbb{N} \times \mathbb{N} \rightarrow$ \mathbb{N} with the following properties:
(M1) $G(a, 1)=a$ for all $a \in \mathbb{N}$,
(M2) $G(a, s(b))=G(a, b)+a$ for all $a, b \in \mathbb{N}$.
Use this definition to prove that

$$
2 \times 2=4
$$

where $2 \equiv s(1), 3 \equiv s(2)$, and $4 \equiv s(3)$.

