General Mathematics and Computational Science I

Exercise 8

October 19, 2006

1. Show that

$$
\sum_{k=0}^{n}\binom{n+k}{k} \frac{1}{2^{k}}=2^{n}
$$

Hint: Denote the left hand side by $f(n)$ and prove that $f(n+1)=2 f(n)$. Use Exercise 6, Problem 2.
2. Show that

$$
\binom{n+1}{k+1}=\sum_{j=k}^{n}\binom{j}{k}
$$

for every $0 \leq k \leq n$.
3. Use the method of generating functions to find a closed form expression for the members of the generalized Fibonacci sequence

$$
\begin{gathered}
a_{0}=A, \\
a_{1}=B, \\
a_{n}=a_{n-1}+a_{n-2} .
\end{gathered}
$$

