General Mathematics and Computational Science I

Exercise 15

November 21, 2006

1. (Extension from Homework Set 14.) Use Laplace's method to find the leading term in the asymptotic behavior of

$$
\int_{-1}^{1} \mathrm{e}^{-s \cosh x} \mathrm{~d} x
$$

as $s \rightarrow \infty$.
2. (From Elaydi, p. 28.) Find the equilibrium points of the difference equation

$$
x_{n+1}=\frac{1}{2} x_{n}^{3}+\frac{1}{2} x_{n}
$$

and determine their stability.
3. (From Elaydi, p. 34.) Suppose that the difference equation

$$
x_{n+1}=f\left(x_{n}\right)
$$

has a 2 -cycle whose orbit is $\{a, b\}$. Show that
(a) the 2-cycle is asymptotically stable if $\left|f^{\prime}(a) f^{\prime}(b)\right|<1$,
(b) the 2-cycle is unstable if $\left|f^{\prime}(a) f^{\prime}(b)\right|>1$.

Hint: Note that a 2-cycle is an equilibrium point of $y_{n+1}=f\left(f\left(y_{n}\right)\right)$.

